
Software Development Methods
Course Introduction

Yih-Kuen Tsay
(with contributions by Bow-Yaw Wang)

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 1 / 37



Stages/Activities in Software Development

Requirements Solicitation/Analysis

Specification

Design

Validation (+ Verification)

Implementation

Verification (+ Validation)

testing
simulation
formal verification

Deployment and Maintenance

Others: code review, documentation, etc.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 2 / 37



Challenge of Quality Software Development

What do people ask of a program/software?

Correct, doing what it is supposed to do
Efficient, performing its tasks efficiently
Friendly, easy to use
Well-structured and hence easy to maintain
Fast and cheap to develop
Secure as it should be
Etc.

These demands pose quite a challenge!

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 3 / 37



Challenge of Quality Software Development

What do people ask of a program/software?

Correct, doing what it is supposed to do
Efficient, performing its tasks efficiently
Friendly, easy to use
Well-structured and hence easy to maintain
Fast and cheap to develop
Secure as it should be
Etc.

These demands pose quite a challenge!

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 3 / 37



Are You Up to That Challenge?

Many students (who would become practicing programmers)

rarely care about writing “good” programs,
know few useful programming techniques, and
cannot use development tools effectively.

Note: in this course, a good program is one that is at least
correct and well-structured.

Consequence: low quality software!

Shouldn’t you start to get serious?

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 4 / 37



Are You Up to That Challenge?

Many students (who would become practicing programmers)

rarely care about writing “good” programs,
know few useful programming techniques, and
cannot use development tools effectively.

Note: in this course, a good program is one that is at least
correct and well-structured.

Consequence: low quality software!

Shouldn’t you start to get serious?

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 4 / 37



Are You Up to That Challenge?

Many students (who would become practicing programmers)

rarely care about writing “good” programs,
know few useful programming techniques, and
cannot use development tools effectively.

Note: in this course, a good program is one that is at least
correct and well-structured.

Consequence: low quality software!

Shouldn’t you start to get serious?

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 4 / 37



Course Objectives

Learn how to develop correct and high-quality software with
better engineering skills:

Data modeling
Software modeling (with the UML in particular)
Design patterns
Development/productivity tools
Verification/analysis tools

Practice these skills and team work with a substantial term
project that reflects real-world situations.

Also, get exposed to a bit of formality so that you will be able to
describe and reason about programs more precisely.

Note: there are numerous other software development methods. You
are encouraged to explore them through course taking or self-study.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 5 / 37



Programming in Class

Environment is controlled.

Problems are well-defined (sorting, BFS, etc.).

Solutions are well-defined (in your algorithm textbooks).

Programs seldom change (write once, use once).

Correctness may not be an issue.

Robustness has rarely been an issue.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 6 / 37



Programming in the Real World

Environment is open.

Problems are not well-defined.

There may be multiple options available.

Programs change all the time.

Correctness is most important.

Robustness is necessary.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 7 / 37



Example: An Inventory System

A 24-hour store asks you to develop an inventory system:

The system will be used by many people.

It is impossible to know what goods or categories the store will
have.

What database and user interface packages would you use?

What if they ask you to add new features?

Your system should better not be confused by different calendar
systems (particularly in Taiwan).

Your system should better be able to be working all year long.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 8 / 37



About Software Project Management

Software development, after all, will be done by engineers.

Project leaders need to know what engineering options they
have.

We will look at the software development problem from an
engineer’s point of view.

The course material should be complementary to related
software project management courses.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 9 / 37



Software Specification

After several meetings with your client, you have an informal
idea of what your client wants.

You bring the informal idea back and start developing the system
with your colleagues.

But your colleagues did not participate in the meetings. They
are not as familiar with the domain knowledge as you are.

What would you do?

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 10 / 37



Example: Sorting Template

Suppose you would like to develop a sorting algorithm for any
totally ordered set.
(Note: a set S is totally ordered if either a < b, a = b, or a > b
for any a, b ∈ S .)

How do you convey the idea to your colleague?

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 11 / 37



A Probable Attempt

An element of a totally ordered set is an object of class TOSet.

We can create an object and assign its value.

The class TOSet has a static member function
compare(TOSet &, TOSet &) that compares two elements.

The sorting function accepts an array of TOSet objects as inputs.

It uses compare to compare elements in the array.

It outputs a permutation of the input array such that the
elements in the permutation are ordered by the compare

function.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 12 / 37



Problems

It is still ambiguous. (What do you mean by “ordered by the
compare function?”)

It is incomplete. (What is a permutation?)

It is written in natural language.

It is already very complicated. (What if you have 30 classes in
your system?)

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 13 / 37



About the Unified Modeling Language

The UML is designed for software/program specification.

It is a graphical language.

It can be used to describe the relation among different classes.

It is convenient to illustrate the interactions among different
objects.

It has a more rigorous semantics.

There are tools that can simulate your UML designs or convert
them into code skeleton.

Etc.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 14 / 37



From Specification to Design

Software development is more than writing down the
specification.

UML specification is a way of communication.

Like using natural languages, you may know the words and
grammar of English, but you may not be able to compose a
good essay in English.

After learning some basics of UML, we will discuss useful
programming techniques for system design.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 15 / 37



It’s Like Solving a Mathematical Problem

Compute ∫
x3 ln3 xdx =?

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 16 / 37



Solution∫
x3 ln3 xdx =

x4

4
ln3 x −

∫
x4

4

3 ln2 x

x
dx

=
x4

4
ln3 x − 3

4

∫
x3 ln2 xdx

=
x4

4
ln3 x − 3

4
(
x4

4
ln2 x −

∫
x4

4

2 ln x

x
dx)

=
x4

4
ln3 x − 3

16
x4 ln2 x +

3

8

∫
x3 ln xdx

=
x4

4
ln3 x − 3

16
x4 ln2 x +

3

8
(
x4

4
ln x −

∫
x4

4

1

x
dx)

=
x4

4
ln3 x − 3

16
x4 ln2 x +

3

32
x4 ln x − 3

32

∫
x3dx

=
x4

4
ln3 x − 3

16
x4 ln2 x +

3

32
x4 ln x − 3

128
x4

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 17 / 37



Strategies and Patterns

What strategies do we have?

polynomial integration
integral of ln x
variable substitution
integration by parts

The problem is solved by choosing combinations of strategies.

What about program development?

Is there any strategy or pattern for programming?

Note: integration by parts∫
f (x)g ′(x)dx = f (x)g(x)−

∫
f ′(x)g(x)dx

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 18 / 37



Data Structures and Algorithms

Suppose you want to implement a database system.

The user may ask you to search or sort by field.

You may use sorting algorithms, search algorithms, even
balanced tree data structures.

For different situations, you may use different sorting algorithms
(e.g., memory versus disk-based).

You do not develop your program from scratch.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 19 / 37



What about System Architecture?

Suppose you want to develop a system for

vehicle controller
user interface
data management

Is there any known strategy or pattern that could be applied?

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 20 / 37



Example: Vehicle

Let’s suppose we want to define a vehicle rental system at
seashore resorts.

They have bikes, cars, sailboats, and yachts.

Class LandVehicle for bikes and cars
Class WaterVehicle for sailboats and yachts

One day, a resort management team decides to introduce
hovercrafts.

How would you modify the class hierarchy to include the new
product?

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 21 / 37



Design Patterns

An objected-oriented programming technique for system design

A collection of class hierarchies

Used in commercial tools and systems

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 22 / 37



Managing Changes

Design and implementation may change

How should the changes be managed?

version control
issues/bugs tracking

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 23 / 37



From Design/Implementation to
Validation/Verification

A software developed by proper methodologies does not
necessarily entail quality.

UML specifications allow clients, system architects, and
programmers to communicate.

Design patterns help system architects and programmers to
deploy software structures sensibly.

But they do not imply the system cannot go wrong.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 24 / 37



Some Systems Are Critical

Device drivers

Medical instruments

Automotive control

Online banking

Stock exchange

Etc.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 25 / 37



What Are the Problems?

Design flaws

Programming errors

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 26 / 37



A Lesson from the Hardware Industry

The first Pentium was found to have the infamous F00F bug.

IC manufacturing costs lots of money.

No company would want to have a buggy design to be sent to
the foundry.

But how?

Note: the “Pentium floating point divide” bug (in 1993) ultimately
cost Intel US$ 475 million.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 27 / 37



Testing and Formal Verification

IC design houses use tools to help them catch bugs.

Testing: run simulation on designs to find bugs
Verification: analyze designs to prove they are correct

Software houses are increasingly using similar tools.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 28 / 37



Testing

Testing is usually performed after the system is implemented.

Nonetheless, one can test the system design before it is
implemented.

Simulator generates random inputs.

Erroneous behaviors can be observed if the proper inputs are
generated.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 29 / 37



Formal Verification

It can check the system before it is implemented.

Verification tools try all possible inputs.

Erroneous behaviors can be observed if the proper inputs are
generated.

Correctness can be ensured if all inputs have been tested.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 30 / 37



Ingredients of Formal Verification

Behavior Modeling

Property Specification

Verification Algorithm/Tool
(or, if that fails, Proof and Proof Checker)

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 31 / 37



Behavior Modeling

It describes system behaviors at a suitable abstraction level,
hiding irrelevant details.

We need a formal language to avoid ambiguity.

The actual control flow of a program (at run time) is of main
concern.

Users specify their systems as models in modeling languages.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 32 / 37



Property Specification

It specifies what properties are of interest.

Another formal language is needed.

High-level properties are independent of the implementation.

Users specify the requirements in property specification
languages.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 33 / 37



Automatic Verification Tools

A verification tool takes the model and property specification as
input.

It checks whether the model satisfies the property or not.

Many verification problems are undecidable and some
work-around techniques (e.g., abstraction) may help.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 34 / 37



Correctness Proofs and Proof Checking

Correctness proofs are the last resort, when everything else fails.

Unfortunately, proofs are usually hard to produce.

Even worse, you can make mistakes in a proof.

Fortunately, checking if a proof is really a proof can be
automated.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 35 / 37



Programming in the Small

We will also study development methods that probably only
work for small programs.

However, a large program is usually composed of smaller ones.

A large program may also be a result of refinement from a
smaller program.

Making the smaller programs correct helps improve the overall
quality of the larger ones.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 36 / 37



Conclusion

This is a course that views software development from an
engineer’s viewpoint.

It covers design and programming techniques for software
development.

It also introduces you to useful verification methods and tools.

We hope you will appreciate the methodologies and improve
software quality with better engineering skills.

Yih-Kuen Tsay (IM.NTU) Course Introduction SDM 2016 37 / 37


	The Challenge
	Course Objectives
	Software Specification
	From Specification to Design/Implementation
	From Design/Implementation to Validation/Verification
	Conclusion

