
Software Development Methods [Compiled on June 5, 2024] Spring 2024

Suggested Solutions to HW#5 Problems

1. (40 points) Consider the structure Z = (Z, {+,×, 0, 1, <}), i.e., the set of integers with

the usual arithmetic functions (+ and ×), constants (0 and 1), and predicates (<); “=”

is implicitly assumed to be a binary predicate.

(a) Let divides(a, b), or alternatively a | b, denote that a divides b. Write a formula

defining divides(a, b) (so, your formula will have a and b as free variables).

Solution. divides(a, b)
∆
= ∃q(b = a× q). 2

(b) Let isGCD(a, b, c) denote that c is the greatest common divisor of a and b. Write a

formula defining isGCD(a, b, c).

Solution. isGCD(a, b, c)
∆
= divides(c, a)∧divides(c, b)∧∀d(divides(d, a)∧divides(d, b)

→ divides(d, c)) 2

2. (20 %) The following C function originalEuclid implements the original Euclidean al-

gorithm. Please give a suitable function contract, namely the pre and post-conditions, for

originalEuclid, using either ACSL or the conventional logic notation. Use \result to

denote the value returned by a function. Let us assume that, for this problem, the type

int is the same as the set Z of integers. And, the formulae you will write are intended for

the semantic structure Z = (Z, {+,−,×, 0, 1, <}), same as in the previous problem; you

may reuse definitions from there.

int originalEuclid (int m, int n)

{ int x,y,tmp;

x = m;

y = n;

while (x!=y) {

if (x < y) {

tmp = x;

x = y;

y = tmp;

}

x = x - y;

}

return x;

}

Solution. Precondition: (0 < m) ∧ (0 < n).

1

Postcondition: (0 < \result) ∧ isGCD(m,n,\result), where isGCD is as defined in the

previous problem. 2

3. (40 %) Please examine the following C function sumofMM and give a suitable function

contract, namely the pre and post-conditions, for sumofMM, using either ACSL or the

conventional logic notation. Use \result to denote the value returned by a function. Be

careful that the function has made an implicit assumption about the size of the input

array (which means that you should put it in the precondition). You may omit the

condition concerning proper memory allocation for the input array and focus on what

the function does. Let us assume that, for this problem, the type int is the same as the

set Z of integers. The formulae you will write are intended for the semantic structure

Z = (Z, {a[],+,−, ∗, 0, 1, 2, <}); “=” is implicitly assumed to be a binary predicate as

usual.

int sumofMM (int* a, int n)

{ int min, max, i;

// Initialize min and max.

if (a[0] < a[1]) {

min = a[0];

max = a[1];

}

else {

min = a[1];

max = a[0];

}

// Divide the rest into pairs.

// Compare the smaller with min and the larger with max.

for (i=2; i<n; i=i+2)

if (a[i] < a[i+1]) {

if (a[i] < min)

min = a[i];

if (a[i+1] > max)

max = a[i+1];

}

else {

if (a[i+1] < min)

min = a[i+1];

2

if (a[i] > max)

max = a[i];

}

return min+max;

}

Solution. Precondition: (2 ≤ n) ∧ ∃m(2×m = n). (Function sumofMM assumes that n is

a positive even integer.)

Postcondition: ∃i(∃j((0 ≤ i < n)∧∀k((0 ≤ k < n) → (a[i] ≤ a[k]))∧(0 ≤ j < n)∧∀k((0 ≤
k < n) → (a[i] ≤ a[k]))∧ (a[i] + a[j] = \result))). (The returned value of sumofMM is the

sum of the minimum and the maximum of the numbers in the input array.) 2

3

