
Software Specification and Verification [December 31, 2008] Fall 2008

Final

Note

This is an open-book exam. You may consult any books, papers, or notes, but discussion with
other students or seeking outside help is strictly forbidden.

Problems

1. Prove, using Natural Deduction (in the sequent form) the validity of the following sequents:

(a) (10 %) ¬A ∧ ¬B ` ¬(A ∨B)

(b) (10 %) A ∧ ∃xB ` ∃x(A ∧B), if x does not occur free in A

2. (10 %) The first-order theory for monoids contains the following two axioms:

• ∀a∀b∀c(a · (b · c) = (a · b) · c). (Associativity)

• ∀a((a · e = a) ∧ (e · a = a)). (Identity)

Here e is a constant, called the identity, and · is the binary operation. Let M denote
the set of the two axioms. Prove using Natural Deduction the validity of the sequent
M ` ∀e′(∀a((a · e′ = a) ∧ (e′ · a = a))→ e′ = e), which says that the identity element of a
monoid is unique. (Hint: a typical proof in algebra books is the following: assuming e′ is
an identity, e′ = e′ · e = e.)

3. The program segment below solves the following problem: given a sequence x1, x2, · · ·, xn

of real numbers (not necessarily positive), represented as an array X, find a subsequence
xi, xi+1, · · ·, xj (of consecutive elements) such that the sum of the numbers in it is
maximum over all subsequences of consecutive elements. (Note: the program in fact gives
only the sum, rather than the indices of the first and the last elements, of the maximum
subsequence.)

G Max := 0;
S Max := 0;
i := 1;
while i ≤ n do

if S Max + x[i] > G Max then

S Max := S Max + x[i];
G Max := S Max

else if x[i] + S Max > 0 then

1



S Max := S Max + x[i]
else S Max := 0
fi

fi

i := i + 1
od

(a) (10 %) Give a pair of pre and post-conditions that precisely describe the requirements
for the program segment.

(b) (20 %) Annotate the program segment into a proof outline that clearly shows the
correctness of the program.

4. (20 %) Prove the partial correctness of the following program using the Owicki-Gries
method.

{true}
acc := 0;
Q0, Q1 := false, false;

Q0 := true;
T := 0;
await ¬Q1 ∨ (T 6= 0);
s0 := acc;
acc := s0 + 1;
Q0 := false;

‖

Q1 := true;
T := 1;
await ¬Q0 ∨ (T 6= 1);
s1 := acc;
acc := s1 + 1;
Q1 := false;


{acc = 2}

5. (20 %) Assuming that the leads-to operator in UNITY is defined without the disjunction
rule, prove the following derived rule.

p 7→ q p′ 7→ q′

p ∨ p′ 7→ q ∨ q′

2


