
Software Specification and Verification [December 30, 2010] Fall 2010

Final

Note

This is an open-book exam. You may consult any books, papers, or notes, but discussion with
other students or seeking outside help is strictly forbidden.

Problems

1. (10 %) Prove, using Natural Deduction (in the sequent form), the validity of ` A ∨ ¬A.
Try to find a proof as short as possible.

2. (20 %) Prove, using Natural Deduction (in the sequent form), the validity of the following
sequents. You may assume ` A ∨ ¬A if it makes the proof shorter and simpler.

(a) ¬A ∨ ¬B ` ¬(A ∧B)

(b) ¬∃x(¬A(x)) ` ∀xA(x)

3. (20 %) The following program segment finds the maximum element of an array A with n

elements.

S1: i := 0;
S2: max := A[i];
S3: while i < n− 1 do

S4: i := i + 1;
S5: if max < A[i] then

S6: max := A[i];
od

(a) Give a pair of pre and post-conditions to describe as precisely as possible what the
program segment achieves. You should assume only a simple assertion language
with constants (0, 1), basic arithmetic operations (+,−) and equality and inequality
relations (=, <, · · ·). So, that means you will have to define the relations that would
be convenient for writing the needed assertions.

(b) Annotate the program segment into a proof outline that clearly shows the total
correctness of the program (according to the pre and post-conditions).

4. (20 %) Prove the partial correctness of the following program using the Owicki-Gries
method.

1



{true}
acc := 0;
Q0, Q1 := false, false;

Q0 := true;
t0 := T0;
T1 := t0;
if Q1 then

await T0 6= t0
fi;
s0 := acc;
acc := s0 + 1;
Q0 := false;
t0 := T0;
T1 := t0

‖

Q1 := true;
t1 := T1;
T0 := t1;
if Q0 then

await T1 6= t1
fi;
s1 := acc;
acc := s1 + 1;
Q1 := false;
t1 := T1;
T0 := t1


{acc = 2}

5. (30 %) Solve the following problems for fair transition systems, which we have studied
as a model for concurrent reactive systems. You may consider only justice, and ignore
compassion, constraints.

(a) Give a suitable formal definition for open fair transition systems, or fair transition
modules, where the set of variables is partitioned into in and out variables. A
system reads from, but does not write on, its in variables. The environment of an
open system reads from, but does not write on, the out variables of the system. The
computation of an open system should take into account the interference from its
environment.

(b) Define a parallel composition operation “‖”on two open fair transition systems that
follows the interleaving model of concurrency. The parallel composition of two open
systems is another open system. Be careful about the condition under which two
systems may be composed.

(c) For two systems S1 and S2 that are composable, prove that the set of computations
of S1 ‖S2, namely Comp(S1 ‖S2), is the intersection of Comp(S1) and Comp(S2).
(Note: adjust your definitions in the preceding sub-problems so that this composi-
tional property holds.)

2


