First-Order Logic
 (Based on [Gallier 1986], [Goubault-Larrecq and Mackie 1997], and [Huth and Ryan 2004])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Introduction

Logic concerns two concepts:
, truth (in a specific or general context)

* provability (of truth from assumed truth)

Formal (symbolic) logic approaches logic by rules for manipulating symbols:
. Syntax rules: for writing statements (or formulae).
(There are also semantic rules determining whether a statement is true or false in a context or mathematical structure.)
業 Inference rules: for obtaining true statements from other true statements.
We shall introduce two main branches of formal logic:
, propositional logic
*) first-order logic (predicate logic/calculus)
The following slides cover first-order logic.

Predicates

A predicate is a "parameterized" statement that, when supplied with actual arguments, is either true or false such as the following:
. Leslie is a teacher.
Chris is a teacher.
, Leslie is a pop singer.
Chris is a pop singer.
Like propositions, simplest (atomic) predicates may be combined to form compound predicates.

Inferences

We are given the following assumptions:
6or any person, either the person is not a teacher or the person is not rich.

* For any person, if the person is a pop singer, then the person is rich.
We wish to conclude the following:
*) For any person, if the person is a teacher, then the person is not a pop singer.

Symbolic Predicates

Like propositions, predicates are represented by symbols.
業 $p(x)$: x is a teacher.
, $q(x): x$ is rich.

* $r(y)$: y is a pop singer.
- Compound predicates can be expressed:

For all $x, r(x) \rightarrow q(x)$: For any person, if the person is a pop singer, then the person is rich.
For all $y, p(y) \rightarrow \neg r(y)$: For any person, if the person is a teacher, then the person is not a pop singer.

Symbolic Inferences

We are given the following assumptions:
, For all $x, \neg p(x) \vee \neg q(x)$.
For all $x, r(x) \rightarrow q(x)$.
We wish to conclude the following:
For all $x, p(x) \rightarrow \neg r(x)$.

- To check the correctness of the inference above, we ask: Is $(($ for all $x, \neg p(x) \vee \neg q(x)) \wedge($ for all $x, r(x) \rightarrow q(x))) \rightarrow$ (for all $x, p(x) \rightarrow \neg r(x))$ valid?

Syntax

Logical symbols:

- A countable set V of variables: x, y, z, \ldots;
- Logical connectives (operators): $\neg, \wedge, \vee, \rightarrow, \leftrightarrow, \perp, \forall$ (for all),
\exists (there exists);
. Auxiliary symbols: "(", ")".Non-logical symbols:
A countable set of function symbols with associated ranks (arities);
(3 countable set of constants (which may be seen as functions with rank 0);
(3 countable set of predicate symbols with associated ranks (arities);
We refer to a first-order language as Language L, where L is the set of non-logical symbols (e.g., $\{+, 0,1,<\}$). The set L is usually referred to as the signature of the first-order language.

Syntax (cont.)

- Terms:
, Every constant and every variable is a term. If $t_{1}, t_{2}, \cdots, t_{k}$ are terms and f is a k-ary function symbol $(k>0)$, then $f\left(t_{1}, t_{2}, \cdots, t_{k}\right)$ is a term.
- Atomic formulae:

Every predicate symbol of 0-arity is an atomic formula and so is \perp.
If $t_{1}, t_{2}, \cdots, t_{k}$ are terms and p is a k-ary predicate symbol ($k>0$), then $p\left(t_{1}, t_{2}, \cdots, t_{k}\right)$ is an atomic formula.

- For example, consider Language $\{+, 0,1,<\}$.
$0, x, x+1, x+(x+1)$, etc. are terms.
* $0<1, x<(x+1)$, etc. are atomic formulae.

Syntax (cont.)

- Formulae:

2. Every atomic formula is a formula.

If A and B are formulae, then so are $\neg A,(A \wedge B),(A \vee B)$, $(A \rightarrow B)$, and $(A \leftrightarrow B)$.
*) If x is a variable and A is a formula, then so are $\forall x A$ and $\exists x A$.
First-order logic with equality includes equality $(=)$ as an additional logical symbol, which behaves like a predicate symbol.
Example formulae in Language $\{+, 0,1,<\}$:

$$
\begin{aligned}
& (0<x) \vee(x<1) \\
& \forall x(\exists y(x+y=0))
\end{aligned}
$$

Syntax (cont.)

- We may give the logical connectives different binding powers, or precedences, to avoid excessive parentheses, usually in this order:

$$
\neg,\{\forall, \exists\},\{\wedge, \vee\}, \rightarrow, \leftrightarrow .
$$

For example, $(A \wedge B) \rightarrow C$ becomes $A \wedge B \rightarrow C$.

- Common abbreviations:

潮 $x=y=z$ means $x=y \wedge y=z$.
$p \rightarrow q \rightarrow r$ means $p \rightarrow(q \rightarrow r)$. Implication associates to the right, so do other logical symbols.
, $\forall x, y, z A$ means $\forall x(\forall y(\forall z A))$.

Free and Bound Variables

In a formula $\forall x A$ (or $\exists x A$), the variable x is bound by the quantifier \forall (or \exists).
-
A free variable is one that is not bound.

- The same variable may have both a free and a bound occurrence.
- For example, consider
$(\forall x(R(x, \underline{y}) \rightarrow P(x)) \wedge \forall y(\neg R(\underline{x}, y) \wedge \forall x P(x)))$.
The underlined occurrences of x and y are free, while others are bound.
A formula is closed, also called a sentence, if it does not contain a free variable.

Free Variables Formally Defined

For a term t, the set $F V(t)$ of free variables of t is defined inductively as follows:

- $F V(x)=\{x\}$, for a variable x;
- $F V(c)=\emptyset$, for a contant c;
$F V\left(f\left(t_{1}, t_{2}, \cdots, t_{n}\right)\right)=F V\left(t_{1}\right) \cup F V\left(t_{2}\right) \cup \cdots \cup F V\left(t_{n}\right)$, for an n-ary function f applied to n terms $t_{1}, t_{2}, \cdots, t_{n}$.

Free Variables Formally Defined (cont.)

For a formula A, the set $F V(A)$ of free variables of A is defined inductively as follows:
$F V\left(P\left(t_{1}, t_{2}, \cdots, t_{n}\right)\right)=F V\left(t_{1}\right) \cup F V\left(t_{2}\right) \cup \cdots \cup F V\left(t_{n}\right)$, for an n-ary predicate P applied to n terms $t_{1}, t_{2}, \cdots, t_{n}$;$F V\left(t_{1}=t_{2}\right)=F V\left(t_{1}\right) \cup F V\left(t_{2}\right) ;$

- $F V(\neg B)=F V(B)$;
$F V(B * C)=F V(B) \cup F V(C)$, where $* \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$;
- $F V(\perp)=\emptyset$;
$F V(\forall x B)=F V(B)-\{x\} ;$
- $F V(\exists x B)=F V(B)-\{x\}$.

Bound Variables Formally Defined

For a formula A, the set $B V(A)$ of bound variables in A is defined inductively as follows:
$\operatorname{BV}\left(P\left(t_{1}, t_{2}, \cdots, t_{n}\right)\right)=\emptyset$, for an n-ary predicate P applied to n terms $t_{1}, t_{2}, \cdots, t_{n}$;

- $B V\left(t_{1}=t_{2}\right)=\emptyset$;
- $B V(\neg B)=B V(B)$;
$B V(B * C)=B V(B) \cup B V(C)$, where $* \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$;
- $B V(\perp)=\emptyset$;
$B V(\forall x B)=B V(B) \cup\{x\}$;
$B V(\exists x B)=B V(B) \cup\{x\}$.

Substitutions

Let t be a term and A a formula.

- The result of substituting t for a free variable x in A is denoted by $A[t / x]$.
Consider $A=\forall x(P(x) \rightarrow Q(x, f(y)))$. When $t=g(y), A[t / y]=\forall x(P(x) \rightarrow Q(x, f(g(y))))$.

For any $t, A[t / x]=\forall x(P(x) \rightarrow Q(x, f(y)))=A$, since there is no free occurrence of x in A.
A substitution is admissible if no free variable of t would become bound (be captured by a quantifier) after the substitution.
For example, when $t=g(x, y), A[t / y]$ is not admissible, as the free variable x of t would become bound.

Substitutions (cont.)

- Suppose we change the bound variable x in A to z and obtain another formula $A^{\prime}=\forall z(P(z) \rightarrow Q(z, f(y)))$.
- Intuitively, A^{\prime} and A should be equivalent (under any reasonable semantics). (Technically, the two formulae A and A^{\prime} are said to be α-equivalent.)
- We can avoid the capture in $A[g(x, y) / y]$ by renaming the bound variable x to z and the result of the substitution then becomes $A^{\prime}[g(x, y) / y]=\forall z(P(z) \rightarrow Q(z, f(g(x, y))))$.
- So, in principle, we can make every substitution admissible while preserving the semantics.

Substitutions Formally Defined

Let s and t be terms. The result of substituting t in s for a variable x, denoted $s[t / x]$, is defined inductively as follows:
$x[t / x]=t$;
$y[t / x]=y$, for a variable y that is not x;
$c[t / x]=c$, for a contant c;
$f\left(t_{1}, t_{2}, \cdots, t_{n}\right)[t / x]=f\left(t_{1}[t / x], t_{2}[t / x], \cdots, t_{n}[t / x]\right)$, for an n-ary function f applied to n terms $t_{1}, t_{2}, \cdots, t_{n}$.

Substitutions Formally Defined (cont.)

For a formula $A, A[t / x]$ is defined inductively as follows:
$P\left(t_{1}, t_{2}, \cdots, t_{n}\right)[t / x]=P\left(t_{1}[t / x], t_{2}[t / x], \cdots, t_{n}[t / x]\right)$, for an n-ary predicate P applied to n terms $t_{1}, t_{2}, \cdots, t_{n}$;
($\left.t_{1}=t_{2}\right)[t / x]=\left(t_{1}[t / x]=t_{2}[t / x]\right)$;
$(\neg B)[t / x]=\neg B[t / x]$;$(B * C)[t / x]=(B[t / x] * C[t / x])$, where $* \in\{\wedge, \vee, \rightarrow, \leftrightarrow\} ;$
$\perp[t / x]=\perp$;
$(\forall x B)[t / x]=(\forall x B)$;$(\forall y B)[t / x]=(\forall y B[t / x])$, if variable y is not x;$(\exists x B)[t / x]=(\exists x B)$;

- $(\exists y B)[t / x]=(\exists y B[t / x])$, if variable y is not x;

First-Order Structures

A first-order structure \mathcal{M} is a pair (M, I), where
. M (a non-empty set) is the domain of the structure, and l is the interpretation function, that assigns functions and predicates over M to the function and predicate symbols.
An interpretation may be represented by simply listing the functions and predicates.
For instance, $\left(Z,\left\{+z, 0_{z}\right\}\right)$ is a structure for the language $\{+, 0\}$. The subscripts are omitted, as $(Z,\{+, 0\})$, when no confusion may arise.

Semantics

Since a formula may contain free variables, its truth value depends on the specific values that are assigned to these variables.
Given a first-order language and a structure $\mathcal{M}=(M, I)$, an assignment is a function from the set of variables to M.
The structure \mathcal{M} along with an assignment s determines the truth value of a formula A, denoted as $A_{\mathcal{M}}[s]$.

- For example, $(x+0=x)_{(z,\{+, 0\})}[x:=1]$ evaluates to T.

Semantics (cont.)

We say \mathcal{M}, $s \models A$ when $A_{\mathcal{M}}[s]$ is T (true) and $\mathcal{M}, s \not \vDash A$ otherwise.

- Alternatively, \models may be defined as follows (propositional part is as in propositional logic):

$$
\begin{aligned}
\mathcal{M}, s \equiv \forall x A & \Longleftrightarrow \mathcal{M}, s[x:=m] \models A \text { for all } m \in M . \\
\mathcal{M}, s \equiv \exists x A & \Longleftrightarrow \mathcal{M}, s[x:=m] \models A \text { for some } m \in M .
\end{aligned}
$$

where $s\left[x:=m\right.$ d denotes an updated assignment s^{\prime} from s such that $s^{\prime}(y)=s(y)$ for $y \neq x$ and $s^{\prime}(x)=m$.
For example, $(Z,\{+, 0\}), s \models \forall x(x+0=x)$ holds, since $(Z,\{+, 0\}), s[x:=m] \models x+0=x$ for all $m \in Z$.

Satisfiability and Validity

A formula A is satisfiable in \mathcal{M} if there is an assignment s such that $\mathcal{M}, s \models A$.
A formula A is valid in \mathcal{M}, denoted $\mathcal{M} \models A$, if $\mathcal{M}, s \models A$ for every assignment s.
-
For instance, $\forall x(x+0=x)$ is valid in $(Z,\{+, 0\})$.

- \mathcal{M} is called a model of A if A is valid in \mathcal{M}.

A formula A is valid if it is valid in every structure, denoted $\models A$.

Relating the Quantifiers

Lemma

$$
\begin{aligned}
& \models \neg \forall x A \leftrightarrow \exists x \neg A \\
& =\neg \exists x A \leftrightarrow \forall x \neg A \\
& =\forall x A \leftrightarrow \neg \exists x \neg A \\
& =\exists x A \leftrightarrow \neg \forall x \neg A
\end{aligned}
$$

Note: These equivalences show that, with the help of negation, either quantifier can be expressed by the other.

Quantifier Rules of Natural Deduction

$$
\begin{gather*}
\frac{\Gamma \vdash A[y / x]}{\Gamma \vdash \forall x A}(\forall I) \\
\frac{\Gamma \vdash A[t / x]}{\Gamma \vdash \exists x A}(\exists I) \\
\frac{\Gamma \vdash \forall x A}{\Gamma \vdash A[t / x]}(\forall E) \\
\Gamma \vdash \exists x A \quad \Gamma, A[y / x] \vdash B \\
\Gamma \vdash B
\end{gather*}
$$

In the rules above, we assume that all substitutions are admissible and y does not occur free in Γ or A.

A Proof in First-Order ND

Below is a partial proof of the validity of $\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)) \rightarrow \forall x(p(x) \rightarrow \neg r(x))$ in $N D$, where γ denotes $\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x))$.

$$
\begin{align*}
& \overline{\gamma, p(y), r(y) \vdash r(y) \rightarrow q(y)} \overline{\gamma, p(y), r(y) \vdash r(y)}(A x) \\
& \frac{\gamma x, p(y), r(y) \vdash q(y)}{\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)), p(y), r(y) \vdash q(y) \wedge \neg q(y)}(\wedge I) \\
& \frac{\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)), p(y) \vdash \neg r(y)}{\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)) \vdash p(y) \rightarrow \neg r(y)}(\rightarrow I) \\
& \frac{\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)) \vdash \forall x(p(x) \rightarrow \neg r(x))}{\vdash \forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)) \rightarrow \forall x(p(x) \rightarrow \neg r(x))}(\rightarrow I)
\end{align*}
$$

Equality Rules of Natural Deduction

Let t, t_{1}, t_{2} be arbitrary terms; again, assume all substitutions are admissible.

$$
\begin{aligned}
& \overline{\Gamma \vdash t=t}(=I) \\
& \frac{\Gamma \vdash t_{1}=t_{2} \quad \Gamma \vdash A\left[t_{1} / x\right]}{\Gamma \vdash A\left[t_{2} / x\right]}(=E)
\end{aligned}
$$

Note: The $=$ sign is part of the object language, not a meta symbol.

Soundness and Completeness

Let System ND also include the quantifier rules.

Theorem

System ND is sound, i.e., if a sequent $\Gamma \vdash \Delta$ is provable in ND, then $\Gamma \vdash \Delta$ is valid.

Theorem

System ND is complete, i.e., if a sequent $\Gamma \vdash \Delta$ is valid, then $\Gamma \vdash \Delta$ is provable in ND.

Note: assume no equality in the logic language.

Compactness

Theorem

For any (possibly infinite) set Γ of formulae, if every finite non-empty subset of Γ is satisfiable then Γ is satisfiable.

Consistency

Recall that a set Γ of formulae is consistent if there exists some formula B such that the sequent $\Gamma \vdash B$ is not provable. Otherwise, Γ is inconsistent.

Lemma

For System ND, a set Γ of formulae is inconsistent if and only if there is some formula A such that both $\Gamma \vdash A$ and $\Gamma \vdash \neg A$ are provable.

Theorem

For System ND, a set Γ of formulae is satisfiable if and only if Γ is consistent.

Theory

- Assume a fixed first-order language.

A set S of sentences is closed under provability if
$S=\{A \mid A$ is a sentence and $S \vdash A$ is provable $\}$.
A set of sentences is called a theory if it is closed under provability.
A theory is typically represented by a smaller set of sentences, called its axioms.

Group as a First-Order Theory

The set of non-logical symbols is $\{\cdot, e\}$, where \cdot is a binary function (operation) and e is a constant (the identity).

- Axioms:

$$
\begin{aligned}
& \forall a, b, c(a \cdot(b \cdot c)=(a \cdot b) \cdot c) \\
& \forall a(a \cdot e=e \cdot a=a) \\
& \forall a(\exists b(a \cdot b=b \cdot a=e))
\end{aligned}
$$

(Associativity)
(Identity)
(Inverse)
$(Z,\{+, 0\})$ and $(Q \backslash\{0\},\{\times, 1\})$ are models of the theory.

- Additional axiom for Abelian groups:
* $\forall a, b(a \cdot b=b \cdot a)$
(Commutativity)

Theorems

A theorem is just a statement (sentence) in a theory (a set of sentences).

- For example, the following are theorems in Group theory:
, $\forall a \forall b \forall c((a \cdot b=a \cdot c) \rightarrow b=c)$.
$\forall a \forall b \forall c(((a \cdot b=e) \wedge(b \cdot a=e) \wedge(a \cdot c=e) \wedge(c \cdot a=e)) \rightarrow b=c)$, which says that every element has a unique inverse.

