
UNITY Logic
(Based on the Modified Version in [Misra 1995])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 1 / 19

Introduction

UNITY was once quite popular. Its logic has been modified and
improved in a subsequent work.

J. Misra. A logic for concurrent programming. Journal of
Computer and Software Engineering, 3(2): 239-272, 1995.

A program consists of (1) an initial condition and (2) a set of
actions (or conditional multiple-assignments), which always
includes skip.

Properties are defined in terms of

initially p,
p co q, and
p transient.

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 2 / 19

Program Model: Action System

Syntax: An action system consists of

a set of variables and
a set of actions, always including skip (which does not change
the system’s state).

A particular valuation of the variables is called a system or
program state. An action is essentially a guarded multiple
assignment to the variables.

Semantics:

A system execution starts from some initial state and goes on
forever.
In each step of an execution, some action is selected (under
some fairness constraint) and executed, resulting in a possible
change of the program state.

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 3 / 19

The “Contrains” Operator

The safety properties of a system are stated using the
“contrains” (co) operator.

“p co q” (p constrains q) states that whenever p holds, q holds
after the execution of any single action.

Formally, p co q
∆
= 〈∀t :: {p} t {q}〉.

As skip may be applied in any state, from p co q it follows that
p ⇒ q.

It also follows that once p holds, q continues to hold upto (and
including) the point where p ceases to hold (if it ever does).

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 4 / 19

Usages of the co

“x = 0 co x ≥ 0”: once x becomes 0 it remains 0 until it
becomes positive.

“∀m :: x = m co x ≥ m”: x never decreases.
This is equivalent to “∀m :: x ≥ m co x ≥ m”.

“∀m, n :: x , y = m, n co x = m ∨ y = n”: x and y never
change simultaneously.

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 5 / 19

The unless Operator

“p unless q” was introduced in the original UNITY logic as a
basic safety property:

p unless q in F
∆
= ∀t : t in F : {p ∧ ¬q} t {p ∨ q}

If p is true at some point of computation, then it will continue
to hold as long as q does not (q may never hold and p continues
to hold forever).

Example: “x ≥ k unless x > k” says that x is non-decreasing.

p unless q ≡ p ∧ ¬q co p ∨ q.

p co q ≡ p unless ¬p ∧ q.

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 6 / 19

Special Cases of co

p stable
∆
= p co p

p invariant
∆
= (initially p) and (p stable)

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 7 / 19

Some Rules of Hoare Logic

{p} s {true} {false} s {q}

{p} s {false}
¬p

〈∀j :: {pj} s {qj}〉

{〈∀j :: pj〉} s {〈∀j :: qj〉}

〈∀j :: {pj} s {qj}〉

{〈∃j :: pj〉} s {〈∃j :: qj〉}

p ⇒ p′, {p′} s {q′}, q′ ⇒ q

{p} s {q}

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 8 / 19

Derived Rules (Theorems)

A theorem in the form of
∆1

∆2

means that properties in ∆2 can be deduced from properties in the
premise ∆1.

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 9 / 19

Some Derived Rules

false co p.

p co true.

Conjunction and Disjunction

p co q, p′ co q′

p ∨ p′ co q ∨ q′

p ∧ p′ co q ∧ q′

Stable Conjunction and Disjunction

p co q, r stable
p ∧ r co q ∧ r
p ∨ r co q ∨ r

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 10 / 19

The Substitution Axiom

An invariant may be replaced by true, and vice versa, in any property
of a program.

Example 1: given p co q and J invariant, we conclude

p ∧ J co q, p co q ∧ J , p ∧ J co q ∧ J , etc.

Example 2:
p unless q, ¬q invariant

p stable

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 11 / 19

An Elimination Theorem

Free variables may be eliminated by taking conjunctions or
disjunctions.

Suppose p a property that does not name any program variable
other than x .

Then, p[x := m] does not contain any variable and is a constant
(and hence stable).

Observe that p = 〈∃m : p[x := m] : x = m〉.
An elimination theorem:

x = m co q, where m is free
p does not name m nor any program variable other than x

p co 〈∃m :: p[x := m] ∧ q〉

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 12 / 19

An Elimination Theorem (cont.)

x = m co q, where m is free
p does not name m nor any program variable other than x

p co 〈∃m :: p[x := m] ∧ q〉

Proof:
x = m co q , premise
p[x := m] ∧ x = m co p[x := m] ∧ q

, stable disjunction with p[x := m]
〈∃m :: p[x := m] ∧ x = m〉 co 〈∃m :: p[x := m] ∧ q〉

, disjuction over all m
p co 〈∃m :: p[x := m] ∧ q〉 , simplifying the lhs

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 13 / 19

Transient Predicate (under Weak Fairness)

Under weak fairness, it is sufficient to have a single action falsify
a transient predicate.

p transient
∆
= 〈∃s :: {p} s {¬p}〉

Some derived rules:

(p stable ∧ p transient) ≡ ¬p

p transient
p ∧ q transient

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 14 / 19

Progress Properties

p ensures q
∆
= (p ∧ ¬q co p ∨ q) and p ∧ ¬q transient.

If p holds at any point, it will continue to hold as long as q does
not hold; eventually q holds.

“p 7→ q” specifies that if p holds at any point then q holds or
will eventually hold. Inductive definition:

p ensures q
p 7→ q

(transitivity)
p 7→ q, q 7→ r

p 7→ r

(disjunction)
〈∀m : m ∈ W : p(m) 7→ q〉
〈∃m : m ∈ W : p(m)〉 7→ q

Example: “x ≥ k 7→ x > k” says that x will eventually increase.

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 15 / 19

Some Derived Rules for Progress

(Progress-Safety-Progress, PSP)

p 7→ q, r co s
(p ∧ r) 7→ (q ∧ s) ∨ (¬r ∧ s)

(well-founded induction)

〈∀m :: p ∧M = m 7→ (p ∧M < m) ∨ q〉
p 7→ q

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 16 / 19

Asynchronous Composition

Notation: F [] G (the union of F and G)

Semantics:

The set of variables is the union of the two sets of variables.
The set of actions is the union of the two sets of actions.
The composed system is executed as a single system.

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 17 / 19

UNITY Logic vs. Lamport’s ‘Hoare Logic’

“co” enjoys the complete rule of consequence.

Rules of conjunction and disjunction also hold.

Stronger rule of parallel composition:

p co q in F , p co q in G
p co q in F [] G

But, “co” is much less convenient for sequential composition.

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 18 / 19

Union Theorems

p unless q in F , p stable in G
p unless q in F [] G

p invariant in F , p stable in G
p invariant in F [] G

p ensures q in F , p stable in G
p ensures q in F [] G

If any of the following properties holds in F , where p is a local
predicate of F , then it also holds in F [] G for any G :
p unless q, p ensures q, p invariant.

Note: Any invariant used in applying the substitution axiom to
deduce a property of one module should be proved an invariant in the
other module.

Yih-Kuen Tsay (IM.NTU) UNITY Logic SSV 2014 19 / 19

	Introduction
	The co Operator
	The unless Operator
	Derived Rules
	The Substitution Axiom
	An Elimination Theorem
	Progress
	Composition

