Suggested Solutions for Homework Assignment \#1

We assume the binding powers of the logical connectives and the entailment symbol decrease in this order: $\neg,\{\wedge, \vee\}, \rightarrow, \leftrightarrow, \vdash$.

1. (30 points) Prove that every propositional formula has an equivalent formula in the conjunctive normal form and also an equivalent formula in the disjunctive normal form. (Hint: by induction on the structure of a formula, dealing with both cases simultaneously)
Solution. Let us first review some preliminaries. A (non-empty) clause is a disjunction of one or more literals such as $p \vee \neg q \vee r$, while a (non-empty) term/product is a conjunction of one or more literals such as $\neg p \wedge q \wedge \neg r$. (Note: the name "term" as defined here is not commonly used in propositional logic. However, it is adequate in light of the notion of a term in algebraic expressions. An alternative name is "product".) So, a formula is in conjunctive normal form (CNF) if it is a conjunction of one or more clauses. A formula is in disjunctive normal form (DNF) if it is a disjunction of one or more terms. A clause by itself is in CNF (a one-clause CNF) and, when seen as a disjunction of one-literal terms, is also in DNF. Similarly, for a term. A single literal is a special case of a clause and also of a term.
The complement of a clause (term), after the negation is pushed to the literal level, becomes a term (clause), e.g., $\neg(p \vee \neg q \vee r) \Leftrightarrow \neg p \wedge q \wedge \neg r$. Taking this one level up, the complement of a formula in CNF (DNF), after the negation is pushed to the literal level, becomes a formula in DNF (CNF), e.g., $\neg((p \vee \neg q) \wedge(q \vee r)) \Leftrightarrow(\neg p \wedge q) \vee(\neg q \wedge \neg r)$.
Now we prove the problem statement by induction on the structure of a given formula φ.
Base case (φ is just a propositional symbol): a propositional symbol can be seen as a single-literal clause or term and so is already in CNF and in DNF.
Inductive step: there are three cases.
(a) $\varphi=\neg \psi$: let ψ^{C} be a formula equivalent to ψ in CNF and ψ^{D} an equivalent formula in DNF (guaranteed to exist by the induction hypothesis). Pushing the negation at the front of $\neg \psi^{C}\left(\neg \psi^{D}\right)$ to the literal level, we get a formula equivalent to φ in DNF (CNF).
(b) $\varphi=\varphi_{1} \wedge \varphi_{2}$: let $\varphi_{1}^{C}\left(\varphi_{2}^{C}\right)$ be a formula equivalent to $\varphi_{1}\left(\varphi_{2}\right)$ in CNF and $\varphi_{1}^{D}\left(\varphi_{2}^{D}\right)$ an equivalent formula in DNF. The formula $\varphi_{1}^{C} \wedge \varphi_{2}^{C}$ is equivalent to φ and readily in CNF.
To obtain a formula equivalent to φ in DNF, suppose $\varphi_{1}^{D}=t_{1} \vee t_{2} \vee \cdots \vee t_{l}$ and $\varphi_{2}^{D}=u_{1} \vee u_{2} \vee \cdots \vee u_{m}$, where t_{i} 's and u_{j} 's are terms. Then, by repeatedly distributing the top-level \wedge in $\varphi_{1}^{D} \wedge \varphi_{2}^{D}$ to the term level, we obtain a formula $\bigvee_{1 \leq i \leq l, 1 \leq j \leq m}\left(t_{i} \wedge u_{j}\right)$ in DNF that is equivalent to φ.
(c) $\varphi=\varphi_{1} \vee \varphi_{2}$: analogous to the case of $\varphi=\varphi_{1} \wedge \varphi_{2}$.
2. (40 points) Prove, using Natural Deduction (in the sequent form), the validity of the following sequents:
(a) $p \vee q \rightarrow r \vdash(p \rightarrow r) \wedge(q \rightarrow r)$

Solution.

$$
\frac{\frac{\alpha}{p \vee q \rightarrow r \vdash p \rightarrow r}(\rightarrow I)}{p \vee q \rightarrow r \vdash(p \rightarrow r) \wedge(q \rightarrow r)} \frac{\beta}{p \vee q \rightarrow r \vdash q \rightarrow r}_{(\rightarrow I)}^{(\wedge I)}
$$

α :
β :

$$
\frac{\overline{p \vee q \rightarrow r, q \vdash p \vee q \rightarrow r}^{(H y p)} \quad \frac{\overline{p \vee q \rightarrow r, q \vdash q}^{p \vee q \rightarrow r p)}\left(\vee_{2}\right)}{p \vee q \rightarrow r, q \vdash r}(\rightarrow E)}{}
$$

(b) $\vdash(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$

Solution.
α :

$$
\frac{\overline{p \rightarrow(q \rightarrow r), p \wedge q \vdash p \rightarrow(q \rightarrow r)}^{p \rightarrow(H y p)} \quad \frac{\overline{p \rightarrow(q \rightarrow r), p \wedge q \vdash p \wedge q}}{p \rightarrow(q \rightarrow r), p \wedge q \vdash p}\left(\wedge E_{1}\right)}{p \rightarrow(q \rightarrow r), p \wedge q \vdash q \rightarrow r}(\rightarrow E)
$$

3. (30 points) Prove, using Natural Deduction (in the sequent form), the validity of the following sequents:
(a) $\vdash(p \rightarrow q) \rightarrow(\neg p \vee q)$

Solution.

$$
\begin{aligned}
& \frac{\alpha_{p \rightarrow q, \neg(\neg p \vee q), p \vdash \neg(\neg p \vee q)}^{p}(H y p)}{p \rightarrow \neg(\neg p \vee q), p \vdash(\neg p \vee q) \wedge \neg(\neg p \vee q)}(\wedge I) \\
& \frac{p \rightarrow q, \neg(\neg p \vee q) \vdash(\neg p \vee q) \wedge \neg(\neg p \vee q)}{\frac{p \rightarrow q \vdash \neg \neg(\neg p \vee q)}{p \rightarrow q \vdash \neg p \vee q}(\neg \neg E)}(\neg I) \\
& \frac{\frac{p \rightarrow q \vdash \neg p \vee q}{\vdash(p \rightarrow q) \rightarrow(\neg p \vee q)}(\neg I)}{\vdash E)}
\end{aligned}
$$

$\alpha:$

$$
\frac{\overline{p \rightarrow q, \neg(\neg p \vee q), p \vdash p \rightarrow q}(H y p) \quad \overline{p \rightarrow q, \neg(\neg p \vee q), p \vdash p}(H y p)}{\frac{p \rightarrow q, \neg(\neg p \vee q), p \vdash q}{p \rightarrow q, \neg(\neg p \vee q), p \vdash \neg p \vee q}\left(\vee I_{2}\right)}(\rightarrow E)
$$

(b) $\vdash((p \rightarrow q) \rightarrow p) \rightarrow p$

Solution.
$\alpha:$

$$
\frac{\overline{(p \rightarrow q) \rightarrow p, \neg p, p, \neg q \vdash p}(H y p) \quad \overline{(p \rightarrow q) \rightarrow p, \neg p, p, \neg q \vdash \neg p}(\neg y p)}{\frac{(p \rightarrow q) \rightarrow p, \neg p, p \vdash q}{(p \rightarrow q) \rightarrow p, \neg p \vdash p \rightarrow q}(\rightarrow I)}(\neg E)
$$

