
Software Specification and Verification [Compiled on December 29, 2021] Fall 2021

Suggested Solutions for Homework Assignment #4

We assume the binding powers of the logical connectives and the entailment symbol decrease
in this order: ¬, {∀, ∃}, {∧, ∨}, →, ↔, `.

1. Prove that the following annotated program segments are correct:

(a) (10 points)

{true}
if x < y then x, y := y, x fi
{x ≥ y}

Solution.

pred. calculus + algebra

true ∧ x < y → y ≥ x
(Assign)

{ y ≥ x } x, y := y, x { x ≥ y }
(SP)

{ true ∧ x < y } x, y := y, x { x ≥ y }
pred. calculus + algebra

true ∧ ¬(x < y)→ x ≥ y
(If-Then)

{ true } if x < y then x, y := y, x fi { x ≥ y }

(b) (10 points)

{g = 0 ∧ p = n ∧ n ≥ 1}
while p ≥ 2 do

g, p := g + 1, p− 1
od
{g = n− 1}
Solution.

pred. calculus + algebra

g = 0 ∧ p = n ∧ n = 1→ p > 0 ∧ p+ g = n α

pred. calculus + algebra

p > 0 ∧ p+ g = n ∧ ¬(p ≥ 2)→ g = n− 1
(Consequence)

{ g = 0 ∧ p = n ∧ n = 1 } while p ≥ 2 do g, p := g − 1, p+ 1 od { g = n− 1 }
α :

β
(Assign)

{ p+ 1 > 0 ∧ (p+ 1) + (g − 1) = n } g, p := g − 1, p+ 1 { p > 0 ∧ p+ g = n }
(SP)

{ p > 0 ∧ p+ g = n ∧ p ≥ 2 } g, p := g − 1, p+ 1 { p > 0 ∧ p+ g = n }
(while)

{ p > 0 ∧ p+ g = n } while p ≥ 2 do g, p := g − 1, p+ 1 od { p > 0 ∧ p+ g = n ∧ ¬(p ≥ 2) }
β :

pred. calculus + algebra

p > 0 ∧ p+ g = n ∧ p ≥ 2→ p+ 1 > 0 ∧ (p+ 1) + (g − 1) = n

(c) (20 points) For this program, prove its total correctness.

{y > 0 ∧ (x ≡ m (mod y))}
while x ≥ y do

x := x− y
od
{(x ≡ m (mod y)) ∧ x < y}

1

Solution.

α

pred. calculus + algebra

y > 0 ∧ (x ≡ m (mod y)) ∧ ¬(x ≥ y)→ (x ≡ m (mod y)) ∧ x < y
(SP)

{ y > 0 ∧ (x ≡ m (mod y)) } while x ≥ y do x := x− y od { (x ≡ m (mod y)) ∧ x < y }
α :

β γ

pred. calculus + algebra

y > 0 ∧ (x ≡ m (mod y)) ∧ x ≥ y → x ≥ 0
(while: simply total)

{ y > 0 ∧ (x ≡ m (mod y)) }
while x ≥ y do x := x− y od

{ y > 0 ∧ (x ≡ m (mod y)) ∧ ¬(x ≥ y) }
β :

pred. calculus + algebra

y > 0 ∧ (x ≡ m (mod y)) ∧ x ≥ y →
y > 0 ∧ ((x− y) ≡ m (mod y))

(Assign)
{ y > 0 ∧ ((x− y) ≡ m (mod y)) }

x := x− y
{ y > 0 ∧ (x ≡ m (mod y)) }

(SP)
{ y > 0 ∧ (x ≡ m (mod y)) ∧ x ≥ y } x := x− y { y > 0 ∧ (x ≡ m (mod y)) }

γ :

pred. calculus + algebra

y > 0 ∧ (x ≡ m (mod y)) ∧ x ≥ y ∧ x = Z → x− y < Z
(Assign)

{ x− y < Z } x := x− y { x < Z }
(SP)

{ y > 0 ∧ (x ≡ m (mod y)) ∧ x ≥ y ∧ x = Z } x := x− y { x < Z }

2. (20 points) Given a sequence x1, x2, · · ·, xn of real numbers (not necessarily positive), a
maximum subsequence xi, xi+1, · · ·, xj is a subsequence of consecutive elements from the
given sequence such that the sum of the numbers in the subsequence is maximum over
all subsequences of consecutive elements. Below is a program that determines the sum of
such a sequence.

Global_Max := 0;

Suffix_Max := 0;

for i := 1 to n do

if x[i] + Suffix_Max > Global_Max then

Suffix_Max := Suffix_Max + x[i];

Global_Max := Suffix_Max

else if x[i] + Suffix_Max > 0 then

Suffix_Max := Suffix_Max + x[i]

else Suffix_Max := 0

fi

fi

od;

Annotate the program into a standard proof outline, showing clearly the partial correctness
of the program; a standard proof outline is essentially an annotated program where every
statement is surrounded by a pair of pre- and post-conditions.

Solution. Let isMS (s, x, i) denote that s is the sum of the maximum subsequence in
x[1..i] and isMSX (s, x, i) denote that s is the sum of the maximum subsequence that is
also a suffix in x[1..i]. In particular, isMS (0, x, 0) and isMSX (0, x, 0) both hold, as x[1..0]
denotes the empty sequence. To shorten formulae, we denote Global_Max and Suffix_Max

respectively by G M and S M in all assertions.

2

1 // assume n ≥ 1, which is preserved by the code and will be omitted later
2 Global Max := 0 ;
3 // isMS (G M , x, 0)
4 Suff ix Max := 0 ;
5 // isMS (G M , x, 0) ∧ isMSX (S M , x, 0)
6 i := 1 ;
7 // (1 ≤ i ≤ n + 1) ∧ isMS (G M , x, i− 1) ∧ isMSX (S M , x, i− 1)
8 while i <= n do
9 // (1 ≤ i ≤ n) ∧ isMS (G M , x, i− 1) ∧ isMSX (S M , x, i− 1)

10 i f x [i] + Suff ix Max > Global Max then
11 // (1 ≤ i ≤ n) ∧ isMS (x[i] + S M , x, i) ∧ isMSX (x[i] + S M , x, i)
12 Suff ix Max := Suff ix Max + x [i] ;
13 // (1 ≤ i ≤ n) ∧ isMS (S M , x, i) ∧ isMSX (S M , x, i)
14 Global Max := Suff ix Max
15 // (1 ≤ i ≤ n) ∧ isMS (G M , x, i) ∧ isMSX (S M , x, i)
16 else
17 // (1 ≤ i ≤ n) ∧ isMS (G M , x, i) ∧ isMSX (S M , x, i− 1)
18 i f x [i] + Suff ix Max > 0 then
19 // (1 ≤ i ≤ n) ∧ isMS (G M , x, i) ∧ isMSX (x[i] + S M , x, i)
20 Suff ix Max := Suff ix Max + x [i]
21 // (1 ≤ i ≤ n) ∧ isMS (G M , x, i) ∧ isMSX (S M , x, i)
22 else
23 // (1 ≤ i ≤ n) ∧ isMS (G M , x, i) ∧ isMSX (0, x, i)
24 Suff ix Max := 0 ;
25 // (1 ≤ i ≤ n) ∧ isMS (G M , x, i) ∧ isMSX (S M , x, i)
26 f i
27 // (1 ≤ i ≤ n) ∧ isMS (G M , x, i) ∧ isMSX (S M , x, i)
28 f i
29 // (1 ≤ i ≤ n) ∧ isMS (G M , x, i) ∧ isMSX (S M , x, i)
30 i := i + 1
31 // (1 ≤ i ≤ n + 1) ∧ isMS (G M , x, i− 1) ∧ isMSX (S M , x, i− 1)
32 od ;
33 // isMS (G M , x, i−1)∧ isMSX (S M , x, i−1)∧ i = n+ 1(implying isMS (G M , x, n))

3. (40 points) A majority of an array of n elements is an element that has more than n
2

occurrences in the array. Below is a program that finds the majority of an array X of n
elements or determines its non-existence. (Hint: if A[i] 6= A[j], then the majority of A
remains a majority in a new array B obtained from A by removing A[i] and A[j]. Check
out Udi Manber’s algorithms book if you cannot understand the program.)

C,M := X[1],1;

i := 2;

while i<=n do

if M=0 then C,M := X[i],1

else if C=X[i] then M := M+1

else M := M-1

fi

3

fi;

i := i+1

od;

if M=0 then Majority := -1

else Count := 0;

i := 1;

while i<=n do

if X[i]=C then Count := Count+1 fi;

i := i+1

od;

if Count>n/2 then Majority := C

else Majority := -1

fi

fi

Annotate the program into a standard proof outline, showing clearly the partial correctness
of the program.

Solution. As stated in the hint, the correctness of the code relies on the idea that, if two
different elements are removed from an array A, the majority in A, if it exists, remains
a majority in the remaining part B of array A. However, the majority in B may not be
a majority in A, as an element might become the “majority” after two elements different
from that element are removed. The repeated removals of two different elements are
accomplished in the code by keeping a candidate (namely C, which may change over
time) and counting its occurrences and, when a different element is encountered, the
recorded number (namely M) of occurrences of the candidate is decremented to cancel
out with the encountered element. The “remaining part” of X should be taken as the
elements not yet scanned, i.e., elements in X[i..n], plus the occurrences of the candidate,
recorded in C and M , that await to be cancelled out.

Let cnt(a,A) denote the number of occurrences of element a in an array A. Element

a is the majority of A if cnt(a,A) > |A|
2 or 2cnt(a,A) > |A|, where |A| represents the

number of elements in A. Let isMaj (a,A) represent 2cnt(a,A) > |A|, asserting that a
is the majority of A, and hasMaj (A) represent ∃a(isMaj (a,A)), asserting that A has a
majority.

“If X has a majority, then the remaining part has a majority” is a loop invariant of the
first while loop which carries out the removals of pairs of different elements while keeping
a candidate. This can be stated as “hasMaj (X)→ ∃a((C = a ∧ 2(cnt(a,X[i..n]) + M) >
(M + n − i + 1)) ∨ (C 6= a ∧ 2cnt(a,X[i..n]) > (M + n − i + 1)))”, where (M + n −
i + 1) equals the number of elements in the remaining part. Let us abbreviate this
invariant as majPreserved(X, i, C,M). The invariant is in the form of an implication,
the contrapositive of which says that, if the remaining part of X does not have a majority,
then X does not have a majority.

1 // assume n ≥ 1, which is preserved by the code and will be omitted later
2 C,M := X[1] , 1 ;
3 // C = X[1] ∧M = 1
4 i := 2 ;
5 // (2 ≤ i ≤ n + 1) ∧M ≥ 0 ∧majPreserved(X, i, C,M)
6 while i<=n do
7 // (2 ≤ i ≤ n) ∧M ≥ 0 ∧majPreserved(X, i, C,M)

4

8 i f M=0 then
9 // (2 ≤ i ≤ n) ∧M = 0 ∧majPreserved(X, i, C,M)

10 C,M := X[i] , 1
11 // (2 ≤ i ≤ n) ∧M > 0 ∧majPreserved(X, i + 1, C,M)
12 else
13 // (2 ≤ i ≤ n) ∧M > 0 ∧majPreserved(X, i, C,M)
14 i f C=X[i] then
15 // (2 ≤ i ≤ n) ∧M > 0 ∧majPreserved(X, i, C,M) ∧ C = X[i]
16 M := M+1
17 // (2 ≤ i ≤ n) ∧M > 0 ∧majPreserved(X, i + 1, C,M) ∧ C = X[i]
18 else
19 // (2 ≤ i ≤ n) ∧M > 0 ∧majPreserved(X, i, C,M) ∧ C 6= X[i]
20 M := M−1
21 // (2 ≤ i ≤ n) ∧M ≥ 0 ∧majPreserved(X, i + 1, C,M) ∧ C 6= X[i]
22 f i
23 // (2 ≤ i ≤ n) ∧M ≥ 0 ∧majPreserved(X, i + 1, C,M)
24 f i ;
25 // (2 ≤ i ≤ n) ∧M ≥ 0 ∧majPreserved(X, i + 1, C,M)
26 i := i+1
27 // (2 ≤ i ≤ n + 1) ∧M ≥ 0 ∧majPreserved(X, i, C,M)
28 od ;
29 // M ≥ 0 ∧majPreserved(X,n + 1, C,M)
30 i f M=0 then
31 // ¬hasMaj (X)
32 Major ity := −1
33 // Majority = −1 ∧ ¬hasMaj (X)
34 else
35 // hasMaj (X)→ isMaj (C,X)
36 Count := 0 ;
37 // hasMaj (X)→ isMaj (C,X) ∧ Count = 0
38 i := 1 ;
39 // hasMaj (X)→ isMaj (C,X) ∧ Count = cnt(C,X[1..i− 1]) ∧ (1 ≤ i ≤ n + 1)
40 while i<=n do
41 // hasMaj (X)→ isMaj (C,X) ∧ Count = cnt(C,X[1..i− 1]) ∧ (1 ≤ i ≤ n)
42 i f X[i]=C then
43 // hasMaj (X) → isMaj (C,X) ∧ Count = cnt(C,X[1..i − 1]) ∧ (1 ≤ i ≤ n) ∧

X[i] = C
44 Count := Count+1
45 // hasMaj (X)→ isMaj (C,X) ∧ Count = cnt(C,X[1..i]) ∧ (1 ≤ i ≤ n)
46 f i ;
47 // hasMaj (X)→ isMaj (C,X) ∧ Count = cnt(C,X[1..i]) ∧ (1 ≤ i ≤ n)
48 i := i+1
49 // hasMaj (X)→ isMaj (C,X) ∧ Count = cnt(C,X[1..i− 1]) ∧ (1 ≤ i ≤ n + 1)
50 od ;
51 // hasMaj (X)→ isMaj (C,X) ∧ Count = cnt(C,X[1..n])
52 i f Count>n/2 then
53 // isMaj (C,X)
54 Major ity := C
55 // Majority = C ∧ isMaj (C,X)

5

56 else
57 // ¬hasMaj (X)
58 Major ity := −1
59 // Majority = −1 ∧ ¬hasMaj (X)
60 f i
61 // (Majority = C ∧ isMaj (C,X)) ∨ (Majority = −1 ∧ ¬hasMaj (X))
62 f i
63 // (Majority = C ∧ isMaj (C,X)) ∨ (Majority = −1 ∧ ¬hasMaj (X))

6

