
Software Specification and Verification [Compiled on December 3, 2024] Fall 2024

Suggested Solutions for Homework Assignment #5

We assume the binding powers of the logical connectives and the entailment symbol decrease
in this order: ¬, {∀, ∃}, {∧, ∨}, →, ↔, ⊢.

1. (40 points) Prove that

(a) |= wlp(while B do S1 od, q) ∧B → wlp(S1,wlp(while B do S1 od, q)) and

(b) |= {p} S {q} iff |= p → wlp(S, q)

which we claimed when proving the completeness of System PD (for the validity of a
Hoare triple with partial correctness semantics).

Here, assuming a sufficiently expressive assertion language, wlp(S, q) denotes the assertion
p such that [[p]] = wlp(S, [[q]]), where [[p]] is defined as {σ ∈ Σ | σ |= p} (i.e., the set
of states where p holds) and wlp(S,Φ) as {σ ∈ Σ | M[[S]](σ) ⊆ Φ}. Recall that, for
σ ∈ Σ, M[[S]](σ) = {τ ∈ Σ | ⟨S, σ⟩ →∗ ⟨E, τ⟩}, M[[S]](⊥) = ∅, and, for X ⊆ Σ ∪ {⊥},
M[[S]](X) =

⋃
σ∈X M[[S]](σ).

Solution. With the assumed expressive assertion language, we can equate a set of states
that may arise in applying wlp(S, [[·]]) to some assertion q with some other assertion p
expressible in the same assertion language.

(a) We show that, for every σ ∈ Σ, σ |= wlp(while B do S1 od, q) ∧ B implies
σ |= wlp(S1,wlp(while B do S1 od, q)). From the operational semantics, we have
⟨while B do S od, σ⟩ → ⟨S;while B do S od, σ⟩, when σ |= B. It follows that
M[[S1;while B do S1 od]](σ) = M[[while B do S1 od]](σ), when σ |= B.

For every σ ∈ Σ,

σ |= wlp(while B do S1 od, q) ∧B
iff { Semantics of ∧ }

σ |= wlp(while B do S1 od, q) and σ |= B
iff { Semantics of wlp(S, q) }

σ ∈ wlp(while B do S1 od, [[q]]) and σ |= B
iff { Definition of wlp(S, [[q]]) }

M[[while B do S1 od]](σ) ⊆ [[q]] and σ |= B
implies { M[[S1;while B do S1 od]](σ) = M[[while B do S1 od]](σ), when σ |= B }

M[[S1;while B do S1 od]](σ) ⊆ [[q]]
iff { Definition of wlp(S, [[q]]) }

σ ∈ wlp(S1;while B do S1 od, [[q]])
iff { Semantics of wlp(S, q) }

σ |= wlp(S1;while B do S1 od, q)
iff { wlp(S1;S2, q) ↔ wlp(S1,wlp(S2, q)) }

σ |= wlp(S1,wlp(while B do S1 od, q)).

1

(b)

|= {p} S {q}
iff { Definition of the validity of a Hoare triple }

M[[S]]([[p]]) ⊆ [[q]]
iff { Definition of M[[S]](X) }

(
⋃

σ∈[[p]]M[[S]](σ)) ⊆ [[q]]

iff { (
⋃

x∈X T (x)) ⊆ U iff for every x, x ∈ X implies T (x) ⊆ U }
for every σ ∈ Σ, σ ∈ [[p]] implies M[[S]](σ) ⊆ [[q]]

iff { Restatement of M[[S]](σ) ⊆ [[q]] }
for every σ ∈ Σ, σ ∈ [[p]] implies σ ∈ {σ ∈ Σ | M[[S]](σ) ⊆ [[q]]}

iff { Definition of ⊆ }
[[p]] ⊆ {σ ∈ Σ | M[[S]](σ) ⊆ [[q]]}

iff { Definition of wlp(S, [[q]]) }
[[p]] ⊆ wlp(S, [[q]])

iff { Definitions of [[p]] and wlp(S, q) }
{σ ∈ Σ | σ |= p} ⊆ {σ ∈ Σ | σ |= wlp(S, q)}

iff { Definition of ⊆ }
for every σ ∈ Σ, σ |= p implies σ |= wlp(S, q)

iff { Definition of → }
for every σ ∈ Σ, σ |= p → wlp(S, q)

iff { Validity rewritten in a conventional simpler way }
|= p → wlp(S, q)

2. (40 points) The following fundamental properties are usually taken as axioms for the
predicate transformer wp (weakest precondition):

• Law of the Excluded Miracle: wp(S, false) ≡ false.

• Distributivity of Conjunction: wp(S,Q1) ∧ wp(S,Q2) ≡ wp(S,Q1 ∧Q2).

• Distributivity of Disjunction for deterministic S: wp(S,Q1) ∨ wp(S,Q2) ≡
wp(S,Q1 ∨Q2).

From the axioms (plus the usual logical and algebraic laws), derive the following properties
of wp (Hint: not every axiom is useful):

(a) Law of Monotonicity: if Q1 ⇒ Q2, then wp(S,Q1) ⇒ wp(S,Q2).

Solution.
wp(S,Q1)

≡ { Q1 ⇒ Q2, i.e., Q1 ≡ Q1 ∧Q2 }
wp(S,Q1 ∧Q2)

≡ { Distributivity of Conjunction }
wp(S,Q1) ∧ wp(S,Q2)

⇒ { A ∧B → B }
wp(S,Q2)

(b) Distributivity of Disjunction (for any command): wp(S,Q1) ∨ wp(S,Q2) ⇒
wp(S,Q1 ∨Q2).

Solution.

2

wp(S,Q1) ∨ wp(S,Q2)
⇒ { Q1 ⇒ Q1 ∨Q2, Q2 ⇒ Q1 ∨Q2, Monotonicity of wp }

wp(S,Q1 ∨Q2) ∨ wp(S,Q1 ∨Q2)
≡ { A ∨A ≡ A }

wp(S,Q1 ∨Q2)

3. (20 points) Prove that ⊢ {a ≥ b} min(a, b, c) {c = b}, given the following declaration:

proc min(in x; in y; out z);
if x < y then

z := x
else z := y;

Solution.

pred. calculus + algebra
x ≥ y ∧ x < y → x = y

(assignment)
{x = y} z := x {z = y}

(stren. pre.)
{x ≥ y ∧ x < y} z := x {z = y} α

(conditional)
{x ≥ y} if x < y then z := x else z := y {z = y}

(procedure)
{a ≥ b} min(a, b, c) {c = b}

α :

pred. calculus + algebra

x ≥ y ∧ ¬(x < y) → y = y
(assignment)

{y = y} z := y {z = y}
(stren. pre.)

{x ≥ y ∧ ¬(x < y)} z := y {z = y}

3

