Software Specification and Verification [Compiled on December 3, 2024] Fall 2024

Suggested Solutions for Homework Assignment #5

We assume the binding powers of the logical connectives and the entailment symbol decrease
in this order: —, {V, 3}, {A, V}, =, <, F.

1. (40 points) Prove that

(a) = wlp(while B do S; od, q) A B — wip(S1, wlp(while B do S od, q)) and
(b) = {p} S {g} iff =p— wip(S,q)

which we claimed when proving the completeness of System PD (for the validity of a
Hoare triple with partial correctness semantics).

Here, assuming a sufficiently expressive assertion language, wip(S, ¢) denotes the assertion
p such that [p] = wip(S,[q]), where [p] is defined as {c € ¥ | o &= p} (i.e., the set
of states where p holds) and wip(S,®) as {0 € ¥ | M[S](c) € ®}. Recall that, for
o€ X, M[S](c) ={r € £ (S,0) =* (E,7)}, M[S](L) =0, and, for X C YU {L},
MISI(X) = Usex M[S](0).

Solution. With the assumed expressive assertion language, we can equate a set of states
that may arise in applying wip(S, []) to some assertion ¢ with some other assertion p
expressible in the same assertion language.

(a) We show that, for every o0 € ¥, 0 E wip(while B do S; od,q) A B implies
o = wlp(S1, wip(while B do S; od,q)). From the operational semantics, we have
(while B do S od,o) — (S;while B do S od, o), when o = B. It follows that
M][S1; while B do S; od](c) = M[while B do S; od](c), when o = B.

For every o € &,
o = wip(while B do S od,q) A B

iff { Semantics of A }

o = wip(while B do S; od,q) and 0 = B
iff { Semantics of wip(S,q) }

o € wilp(while B do S od, [¢q]) and 0 = B
iff { Definition of wip(S,[q]) }

M(while B do S; od](c) C [¢] and 0 = B
implies { M[S1; while B do S; od](c) = M[while B do S; od](¢), when o = B }
M[S1; while B do S; od](0) C [q]

iff { Definition of wip(S, [¢]) }
o € wilp(Sy; while B do S1 od, [q])
iff { Semantics of wip(S,q) }
o = wip(S1; while B do 51 od, q)
iff { wip(S1; Sa,q) < wip(S1, wip(S2,q)) }

o = wip(S1, wlp(while B do S; od,q)).

iff

iff

iff

iff

iff

iff

iff

ift

iff

iff

F{r} S {4}

{ Definition of the validity of a Hoare triple }
MIST(IpD) < [l
{ Definition of M[S](X) }
Usegn MIS1(0))]
{ (Upex T(z)) C U iff for every x, x € X implies T'(x) C U }
for every o € X, o € [p] implies M[S](o) C [4]
{ Restatement of M[S](c) C [¢] }
for every o € X, o € [p] implies 0 € {o € ¥ | M[S](0) C [¢]}
{ Definition of C }
[p] € {o € X[M[S](0) C [a]}
{ Definition of wip(S,[q]) }
[p] € wip(S, [q])
{ Definitions of [p] and wip(S,q) }
{oeX|okEptCl{oeX|okE=wp(S q}
{ Definition of C }
for every o € ¥, 0 |= p implies o = wip(S, q)
{ Definition of — }
for every o € ¥, 0 = p — wip(S, q)
{ Validity rewritten in a conventional simpler way }
=p— wip(S,q)

O]

2. (40 points) The following fundamental properties are usually taken as axioms for the
predicate transformer wp (weakest precondition):

o Law of the Excluded Miracle: wp(S, false) = false.

e Distributivity of Conjunction: wp(S, Q1) A wp(S, Q2) = wp(S, Q1 A Q2).

e Distributivity of Disjunction for deterministic S: wp(S,Q1) V wp(S,Q2) =
wp(S, @1V Q2).

From the axioms (plus the usual logical and algebraic laws), derive the following properties
of wp (Hint: not every axiom is useful):

(a) Law of Monotonicity: if Q1 = Q2, then wp(S, Q1) = wp(S, Q2).
Solution.

=

wp(stl)

{ Q1= Q2 ie, Q1= Q1AQ2 }
wp(S, Q1 A Q2)

{ Distributivity of Conjunction }
’U)p(S,Ql) A ’U)p(S, QZ)

{ANB— B}
wp(S, Q2)

(]

(b) Distributivity of Disjunction (for any command): wp(S,Q1) V wp(S,Q2) =
wp (S, Q1 V Q2).

Solution.

wp(S7Q1) \ WP(S, QQ)
= { Q1= Q1VQ2 Q2= @1V Q2, Monotonicity of wp }
wp (S, Q1 V Q2) V wp(S,Q1V Q2)
{AVA=A}
wp(S7Q1 Vv QQ)

3. (20 points) Prove that - {a > b} min(a, b, c) {c = b}, given the following declaration:
proc min(in z; in y; out z);
if z <y then
z:=x
else z := y;
Solution.
pred. calculus + algebra (assignment)
r>yhrx<y—xr=y {z=y}z=a{2=y}
(stren. pre.)
{z>yne <y} z:=z{z=y} .\
: (conditional)
{r >y} if x <ythen z:=uzelsez:=y {z=y}
- (procedure)
{a > b} min(a, b, c) {c = b}
a:
. calcul 1
pred. calculus + algebra (assignment)
zzyh-(@<y)—oy=y {y=ylz:=y{z=y}
(stren. pre.)
{zzyA-(r <y} z:=y{z=y}

