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Non-recursive Procedures

We first consider procedures with call-by-value parameters (and
global variables).

Syntax:

proc p(in x); S
where x may be a list of variables, S does not contain p, and S
does not change x.

Inference rule:

{P}S{Q}
{Pla/x] A1} p(a) {Qa/x] A1}

where a may not be a global variable changed by S and / does
not refer to variables changed by S.
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How It May Go Wrong

Example: proc p(in x); b:= 2x;
Below is an incorrect usage of the rule

{x=1}b:=2x{b=2Ax=1}
{Oc=1)[b/x1} p(b) {(b=2Ax=1)[b/x]}

since the conclusion is not valid

(b=1} p(b) {b=2Ab=1}.

The inference rule cannot be applied, because the global variable
b is changed by procedure p.

The problem is that x becomes an alias of b in the invocation
p(b), while {x =1} b:=2x {b =2 A x =1} does not take this
into account.
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Non-recursive Procedures (cont.)
We now consider procedures with call-by-value,
call-by-value-result, and call-by-result parameters.
Syntax:
proc p(in x; in out y; out z); S
where x, y, z may be lists of variables, S foes not contain p, and
and S does not change x.

Inference rule:

{P} S {Q}
{P[a,b/x,y] A )} p(a, b, ) {Qla, b, c/x,y, 2] A I}

where b, ¢ are (lists of) distinct variables, a, b, ¢ may not be
global variables changed by S, and / does not refer to variables
changed by S.
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Non-recursive Procedures (cont.)

Using wp, one can justify the rule with the understanding that
“p(a, b,c)" is equivalent to “x,y :=a,b;S;b,c :=y,z".
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Recursive Procedures

A rule for recursive procedures without parameters:
{P}p() {QtH{P} S {Q}
={P} p() {@}

where p is defined as “proc p(); S".

A rule for recursive procedures with parameters:
Y({Plv/x]} p(v) {Qlv/x]}) F{P} S {Q}
= {Pla/x]} p(a) {Q[a/x]}

where p is defined as “proc p(in x); S” and a may not be a
global variable changed by S.
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An Example

proc nonzero();
begin

read x;

if x = 0 then nonzero() fi;
end

The semantics of “read x" is defined as follows:
{IN=v-LAP|[v/x]} read x {IN =LA P}

where v is a single value and L is a stream of values.

We wish to prove the following:

{IN=2Z-n-LA"Z contains only zeros" A n# 0} // {P}
nonzero();

{IN=LAx=nAn#0} //{Q}
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An Example (cont.)

It amounts to proving the following annotation:
proc nonzero();

begin
{IN n-L /\@ontains only zeros” An#0} // {P}

read x;
if x =0 then nonzero() fi

{IN=LAx=nAn#0} //{Q}

end

The first step is to find a suitable assertion R between ‘“read x”
and the “if" statement.

For this, we consider two cases: (1) Z is empty and (2) Z is not
empty.
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An Example (cont.)

Case 1: Z is empty

{IN=n-LAn+#0}

read x

{IN=LAx=nAn#0}

Case 2: Z is not empty

{IN=0-Z"-n-LA"Z contains only zeros" A n # 0}
read x

{IN=2"-n-LA"Z contains only zeros” A n# 0A x =0}

Applying the Disjunction rule, we get a suitable R:

(IN=LAXx=nAn#0)V
(IN=2"-n-LA"Z contains only zeros” A n# 0A x =0)
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An Example (cont.)

We now have to prove the following:

{R} if x =0 then nonzero() fi {IN=LAx=nAn=#0}

From the Conditional rule, this breaks down to
{R Ax =0} nonzero() {IN=LAx=nAn#0}
(RAXx#0)— (IN=LAx=nAn#0) (obvious)
The first case involving the recursive call simplifies to

{IN=2"-n-LA"Z contains only zeros” A n# 0A x =0}
nonzero()

{IN="LAx=nAn#0}

The precondition is stronger than we need and x = 0 can be
removed.
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An Example (cont.)

Finally, we are left with the following proof obligation:

{IN @n LA @contalns only zeros” A n # 0}

nonzero

{IN—L/\x—n/\n;éO}

The induction hypothesis gives us exactly the above.
And, this completes the proof.
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Termination of Recursive Procedures

Consider the previous recursive procedure again.
proc nonzero();
begin
read x;
if x =0 then nonzero() fi;
end

Given an input of the form IN = L; - n- L,, where L; contains
only zero values and n # 0, the command “nonzero()" will halt.

We prove this by induction on the length of L.
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Proving Termination by Induction

Basis: length(L;) =0
@ The input has the form IN = n- Ly, where n # 0.
@ After “read x", x # 0.
% The boolean test x = 0 does not pass and the procedure call
terminates.
Induction step: length(L;) = k > 0
¢ Hypothesis: nonzero() halts when length(L;) = k —1 > 0.
@ let 1 =0- Lll
# The call nonzero() is invoked with IN =0- L} - n- Ly, where L]
contains only zero values and n # 0.
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Proving Termination by Induction (cont.)

Induction step (cont.)

-
®

Y

After “read x”, x = 0.

This boolean test x = 0 passes and a second call nonzero() is
invoked inside the if statement.

The second nonzero( ) is invoked Wi - L>, where L’1
contains only zero values and n # 0

Since length(L}) = k — 1, termination is guaranteed by the
hypothesis.
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Proving Termination by Induction (cont.)

A rule for proving termination of recursive procedures:
{FueW (u<ZAP(u))} p() {QE{P(2)} S{Q}
F{3te W (P(1))} p() {Q}

where
& (W, <) is a well-founded set,
® pis defined as “proc p(); S”, and
% Zis a "rigid" variable that ranges over W and does not occur
in P, Q, orS.
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