
Software Specification and Verification [December 18, 2024] Fall 2024

Final

Important Notes

This is an open-book exam. You may consult any book, paper, note, or on-line resource, but

discussion with others (in person or via a network) is strictly forbidden.

Problems 2 and 4 require electronic submission. Please pack all files for the two problems

in one single .zip file and email it to the instructor (tsay@ntu.edu.tw).

Problems

1. (20 %) Prove, using Natural Deduction (in the sequent form), the validity of the following

sequents.

(a) ¬(p ∧ q) ⊢ ¬p ∨ ¬q

(b) ∃x(∀yA) ∨ ∃x(∀yB) ⊢ ∃x(∀y(A ∨B))

2. (20 %) Consider the Coq formalization of group theory in one of our homework assign-

ments. Your task here is to prove two lemmas: one states that (a−)− = a for every a,

and the other states that (a · b)− = b− · a− for every a and b. You may introduce and

prove other lemmas to better organize your proofs, but should not use highly automated

proof commands/tactics. Please write down the proof scripts on the exam paper and also

include the corresponding self-contained .v file in the single .zip file for the instructor.

Section Group.

Parameter G : Set.

Parameter op : G -> G -> G.

Parameter e : G.

Parameter inv : G -> G.

Infix "o" := op (at level 35, right associativity).

Notation "a -" := (inv a) (at level 25, left associativity).

Axiom assoc : forall a b c : G, a o (b o c) = (a o b) o c.

Axiom unit_l : forall a : G, e o a = a.

Axiom unit_r : forall a : G, a o e = a.

Axiom inverse_l : forall a : G, a- o a = e.

Axiom inverse_r : forall a : G, a o a- = e.

Lemma inv_inv :

1

forall a : G, a-- = a.

Lemma inv_op :

forall a b : G, (a o b)- = b- o a-.

End Group.

3. (10 %) Prove that |= wlp(S1;S2, q) ↔ wlp(S1,wlp(S2, q)) which we claimed when proving

the completeness of System PD (for the validity of a Hoare triple with partial correctness

semantics).

Here, assuming a sufficiently expressive assertion language, wlp(S, q) denotes the assertion

p such that [[p]] = wlp(S, [[q]]), where [[p]] is defined as {σ ∈ Σ | σ |= p} (i.e., the set

of states where p holds) and wlp(S,Φ) as {σ ∈ Σ | M[[S]](σ) ⊆ Φ}. Recall that, for

σ ∈ Σ, M[[S]](σ) = {τ ∈ Σ | ⟨S, σ⟩ →∗ ⟨E, τ⟩}, M[[S]](⊥) = ∅, and, for X ⊆ Σ ∪ {⊥},
M[[S]](X) =

⋃
σ∈X M[[S]](σ).

4. (20 %) The following simple C function concatenates one array of m integers and another

of n integers to obtain a third array of m+ n integers. Annotate the code to show that,

if the first two arrays are sorted and the first element of the second array is larger than

or equal to the last element of the first array, then the third array is sorted as well, and

prove correctness of your annotation using Frama-C. Please write down the annotations

on the exam paper and include the corresponding self-contained .c file in the single .zip

file for the instructor.

void concateArrays(int* a, int m, int* b, int n, int* c)

{ int i;

for (i=0; i<m; i++)

c[i] = a[i];

for (i=0; i<n; i++)

c[m+i] = b[i];

}

5. (20 %) Prove the partial correctness of the following program using the Owicki-Gries

method. Variables T0, T1, t0, and t1 are Boolean;

{acc = 0}

2



t0 := T0;
T1 := t0;
await T0 ̸= t0;
s0 := acc;
acc := s0 + 1;
t0 := T0;
T1 := t0

∥

t1 := T1;
T0 := ¬t1;
await T1 ̸= t1;
s1 := acc;
acc := s1 + 1;
t1 := T1;
T0 := ¬t1


{acc = 2}

6. (10 %) In the temporal verification framework of Manna and Pnueli, one uses the following

rule to prove that a state predicate q holds in all states of every computation of a program

with initial condition Θ and a set of actions T .

Θ → φ
{φ} T {φ}
φ → q

2q

The first two premises correspond respectively to “φ initially ” and “φ stable”, which

taken together means “φ invariant”, in the UNITY logic. However, UNITY does not have

a direct way to express 2q. Nonetheless (with a potential risk of introducing contradiction

to the inductive definition of an invariant), through the Substitution Axiom, which states

that “an invariant may be replaced by true, and vice versa, in any property of a program”,

one may simply use “q invariant” to express the desired property 2q for a program. The

relevant (derived) rule is the following:

φ invariant
φ → q

q invariant

(Note: to differentiate invariants such derived from those that are truly inductive, some

researchers have suggested to write in the form of “q invariantφ”, where φ is the inductive

invariant used to derive “q invariant”.)

Please show the validity of the above derived rule under the Substitution Axiom.

3

