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Computational vs. Reactive Programs

Computational (Transformational) Programs
Run to produce a final result on termination
® An example:

[ local x : integer initially x = n;
y =0
while x > 0 do

x,y =x—1y+2x—-1

od |

Only the initial values and the (final) result are relevant to

correctness
Can be specified by pre and post-conditions such as

w {n>0}y:=?{y=n%}or
@ y:[n=0y=n?
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Computational vs. Reactive Programs (cont.)

Reactive Programs

Maintaining an ongoing (typically not terminating) interaction
with their environments

An example: s: {0,1} initially s = 1
Ip : loop forever do mg : loop forever do
li : remainder; my : remainder;
h : request(s); I my : request(s);
I3 : critical; ms : critical;
ls : release(s); my : release(s);

Must be specified and verified in terms of their behaviors,
including the intermediate states
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The Framework

Computational Model: for providing an abstract syntactic base
fair transition systems (FTS)
fair discrete systems (FDS)
Implementation Language: for describing the actual
implementation; will define syntax by examples; translated into
FTS or FDS for verification
Specification Language: for specifying properties of a system;
will use linear temporal logic (LTL)
Verification Techniques: for verifying that an implementation
satisfies its specification

algorithmic methods: state space exploration
deductive methods: mathematical theorem proving
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Three Kinds of Validity

Assertional Validity: validity of non-temporal formulae, i.e., state
formulae, over an arbitrary state (valuation)

General Temporal Validity: validity of temporal formulae over
arbitrary sequences of states

Program Validity: validity of a temporal formula over sequence
of states that represent computations of the analyzed system
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Variables

Three kinds of variables will be needed:
Program (system) variables
Primed version of program variables: for referring to the values
of program variables in the next state when defining a state
transition
Specification variables: appearing only in formulae (but not in
the program) that specify properties of a program
We assume that all these variables are drawn from a universal
set of variables V.

For every unprimed variable x € V), its primed version x’ is also
in V.
Each variable has a type.
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Assertions

For describing a system and its specification, we assume an
underlying first-order assertion language over V.
The language provides the following elements:
Expressions (corresponding to first-order terms):
variables, constants, and functions applied to expressions
Atomic formulae:
propositions or boolean variables and predicates applied to
expressions
Assertions or state formulae (corresponding to first-order

formulae):
atomic formulae, boolean connectives applied to formulae, and
quantifiers applied to formulae
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Fair Transition Systems

A fair transition system (FTS) P is a tuple (V,©,7,7,C):

V C V: a finite set of typed , including data and
control variables. A (type-respecting) valuation of V is called a
or simply . The set of all V-states is denoted ¥y, .

© : the , an assertion characterizing the

T : asetof , including the transition. Each
transition is associated with a , relating a state
and its successor state(s).

J C T : asetof (weakly fair) transitions.
CCT: asetof (strongly fair) transitions.
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Transitions of an FTS

The transition relation of a transition 7 € T is expressed as an
assertion p(V, V'):
Example: x =1A X" =0.
Fors,s" € ¥y, (s,s') Ex=1Ax"=0 holds if the value of x is
1 in state s and the value of x is 0 in (the next) state s'.
T-successor
State s’ is a 7-successor of s if (s,s') = p-(V, V')
7(s) £ {s’ | s’ is a T-successor of s}.
enabledness of 7
En(r) £ (3V)p.(V, V).
7 is enabled in a state if En(7) holds in that state.
T is enabled in state s iff s has some 7-successor.
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Computations of an FTS

Given an FTS P = (V,0,7,J,C), a computation of P is an infinite
sequence of states o : sy, 51, S5, - - - satisfying:
© Sp is an initial state, i.e., 5 = ©.
: for every i > 0, s;,1 is a T-successor of state s;,
i.e., (si,siv1) = pr(V, V'), for some 7 € T. In this case, we say
that 7 is taken at position i.
. for every 7 € J, it is never the case that 7 is
continuously enabled, but never taken, from some point on.

: for every 7 € C, it is never the case that 7 is
enabled infinitely often, but never taken, from some point on.

The set of all computations of P is denoted by Comp(P).
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An Example Program and Its FTS

Program ANY-Y:

X,y : natural initially x =y =0

lp : while x =0 do
[h: y=y+1 ]| | Mo x =1
[ ' my :
I
Informal description:
The program consists of an of two

processes.
One process continuously increments y as long as it finds x to
be 0, while the other simply sets x to 1 (when it gets its turn to
execute).

The executions of the program are all possible of
the steps of the individual processes.
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An Example Program and Its FTS (cont.)

Program ANY-Y as an FTS Payw.y =(V,0,7T,7,C):
SV {x,y :natural, mo : {l, h, b}, ™1 : {mo, m1}}
. @éﬂ'ozlo/\’iﬁ:mo/\x:y:o
. T 2 {71, Tly, Ty, Tmy }, Whose transition relations are
pr: mp=mo AT =mAX =xANy' =y,
A 71'0:/0/\((X:0/\7['6:/1)\/(X750/\7T6:/2))
ATy =mAX =xNy =y
A
j: {T/oaTllaTmo}
cy

, etc.

L

L
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Program Mux

Qo, @1 : bool initially Qy = Q1 = false
T :{0,1} initially T =0

Po :: P1 n
Io : loop forever do i : loop forever do
[ /1 : remainder; 1 i m1 : remainder; 1
b Q:= true; I mo: Q1 := true;
L: T:=0; my: T:=1,
g : await =Q1 vV T #0; my : await =Qy VvV T # 1,
Is : critical; ms : critical;
L | kb Qo := false; 1 ] L [ me: Qq:= false; i

Justice is sufficient in preventing individual starvation.
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Strong Fairness (Compassion) Is Needed

Program MUX-SEM: mutual exclusion by a semaphore.

s : natural initially s =1

lh : loop forever do : loop forever do
i : remainder; m1 . remainder;
h . request(s); | my @ request(s);
L : critical; ms . critical;
ly . release(s); my : release(s);

request(s) = (await s > 0:s5:=s5—1)
release(s) Ssi=s+1

C: {7l Tmy
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Linear Temporal Logic (LTL)

State formulae
Constructed from the underlying assertion language

Temporal formulae

All state formulae are also temporal formulae.
If p and q are temporal formulae and x a variable in ), then the
following are temporal formulae:

@ -p,pVq pAG P—q pq

w Op, Op, Op, pUqg, pWq

w Op, Op, ©p, Bp, pSq, pBg

w dx:p, Vx:p
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Semantics of LTL

Temporal formulae are interpreted over an infinite sequence of
states, called a model, with respect to a position in that
sequence.

We will define the satisfaction relation (o, i) = ¢ (or ¢ holds in
(0,1)), as the formal semantics of a temporal formula ¢ over an
infinite sequence of states o = 50,51, %,...,5;,... and a position
i>0.

A sequence o satisfies a temporal formula ¢, denoted o |= ¢, if
(0,0) = ¢.

Variables in V are partitioned into flexible and rigid variables. A
flexible variable may assume different values in different states,
while a rigid variable must assume the same value in all states of
a model.
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Semantics of LTL (cont.)

For a state formula p:

(0,i) = p <= p holds at s;.

Boolean combinations of formulae:

(0,i) =—-p <= (0,i) = p does not hold.
(o.)EpPVq < (0.i) Epor(o.i)Eq.
@I)PPAq-ﬁi (0,i) E pand (0,i) = q.

(o, Ep—q < (0,i) E pimplies (0,i) = g.

(o, E P+ q < (0,i) Epifandonlyif (0,i) E g.
Alternatively, the latter three cases can be defined in terms of —
and V, namely p A g 2 —(-pV—q), p—gq 2 -pV g, and

prq=(p—q)A(g— p).
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Semantics of LTL: Future Operators

Op (next p):

(0,i)FOp < (0,i+1)FEp.

<Op (eventually p or sometime p):

(0,i) E Op <= forsome k > i, (0,k) = p.
Op (henceforth p or always p):

(0,i) EOp <= forevery k > i, (0,k) E p.
pUq (puntil q):

(0, EpUq <= forsome k > i, (0,k) = q and for every j
st.i<j<k, (0,j) Fp

p W q (p wait-for q):

(
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Semantics of LTL: Future Operators (cont.)

It can be shown that, for every o and i,

& (o,i) = Opiff (0,i) = true U p

¢ (o,i) EOpiff (0,i) = —=O-p

¢ (o) EpWqiff(o,i) =OpVpUq
So, one can also take O and U as the primitive operators and
define others in terms of O and U :

» Opétrue Up

L Dpé—\<>—|p

- A

“ pWqg=0OpVplUq
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Semantics of LTL: Past Operators

Op (previous p):

(0,i) Fop < (i>0)and (0,i—1) = p.

©p (before p):

(0,i) FE op <= (i >0) implies (o,i — 1) = p.

&p (once p):

(0,i) | ©p <= forsome k, 0 < k <, (0,k) = p.
Bp (

(0,i) | F Bp <= forevery k, 0 < k <, (0,k) = p.

p S q (p since q):

(0,i)EpSq < forsome k, 0 < k <, (0,k) = q and for
every j. k<j < i, (0,)) I p.

so-far p):

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2024 20 /40



NTU

Semantics of LTL: Past Operators (cont.)

p B q (p back-to q):
(0,i)EpBq < forevery k, 0 < k <, (0,k) = p, or for
some k, 0 < k <, (0,k) = g and for every j, k < j <1,

(0.J) E p.
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Semantics of LTL: Past Operators (cont.)

It can be shown that, for every o and i,
¥ (o,i) |E opiff (0,i) E—-©-p
¢ (o,0) E ©piff (0,i) = true Sp
“ (o,0) E Bpiff (0,i) F—<o-p
¥ (o) EpBqiff(o,i) = BpVpSq
So, one can also take ©® and S as the primitive operators and
define others in terms of © and S:
op 2 -e-p
op 2 true Sp
BElp 2. Op
v pBqg= BpVpSq
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Semantics of LTL: Quantifiers

A sequence ¢’ is called a u-variant of o if o’ differs from o in at most
the interpretation given to u in each state.

(0,i) E Ju: ¢ <= (0',i) = ¢ for some u-variant ¢’ of o.
(0,i) EVu: ¢ <= (0',i) = ¢ for every u-variant ¢’ of o.

Alternatively, Vu: ¢ 2 —(Ju: —p).

These definitions apply to both flexible and rigid variables.
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Some LTL Conventions

Let first abbreviate ©false, which holds only at position 0; first
means “this is the first state”.
We use u~ to denote the previous value of u; by convention, u~
equals u at position 0.

Example: x = x~ + 1.

In pure LTL,

(first A x = x + 1)V (=first A\Vu: O(x = u) — x = u—+1).
We use ut (or u') to denote the next value of u, i.e., the value
of u at the next position.

Example: x™ = x + 1.

In pure LTL, Vu: x =u — O(x = u+1).
These previous and next-value notations also apply to
expressions.
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Validity

A state formula is state valid if it holds in every state.

A temporal formula p is (temporally) valid, denoted |= p, if it
holds in every model.

A state formula is P-state valid if it holds in every P-accessible
state (i.e., every state that appears in some computation of P).

A temporal formula p is P-valid, denoted P |= p, if it holds in
every computation of P.
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Equivalence and Congruence

Two formulae p and g are equivalent if p <> q is valid.
Example: p W q < O(O—p — ©q).

Two formulae p and q are congruent if O(p <> q) is valid.
Example: =<&p and O—p are congruent, as O(—Op <> O-p) is
valid.

Two congruent formulae may replace each other in any context.
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A Hierarchy of Temporal Properties

Classes of temporal properties; p, g, p;, g; below are arbitrary
past temporal formulae

Safety properties: Op

Guarantee properties: &p

Obligation properties: A7_;(Op; V <©qi)

Response properties: O<p

Persistence properties: <Op

Reactivity properties: A7_;(O00p; V ©0g;)
The hierarchy

Safety
Guarantee

Response

C Obligation C i
= & — Persistence

C Reactivity

Every temporal formula is equivalent to some reactivity formula.
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More Common Temporal Properties

Safety properties: Op
Example: p W q is a safety property, as it is equivalent to
O(o—p — ©q).
Response properties
Canonical form: OCp
Variant: O(p — <q) (p leads-to g), which is equivalent to
0O(—p Bq).
Reactivity properties: A\/_,(O0Cp; V ©0Oq;)
(Simple) reactivity properties
Canonical form: OOp VvV &Og
Variants: OOp — OCq or O(OOp — <q), which is equivalent
to OCqg vV oOp.
Extended form: O((p A OCr) — <©q)
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Rules for Safety Properties

Rule INV
1. ©—=y¢
2. p—gq
1B. {¢} T {¢}
Uq

where {p} T {q} means {p} 7 {q} (i.e., p- A p — ¢') for every
TeT

The auxiliary assertion ¢ is called an inductive invariant, as it
holds initially and is preserved by every transition.

This rule is sound and (relatively) complete for establishing
P-validity of the future safety formula g (where g is a state
formula).
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A Safety Property of Program Mux-Sem

Mutual exclusion: O(—(my = 5 A ™ = m3)), which is not
inductive.
The inductive ¢ needed:

y>0N(mo=h)+(mo=h)+(m=m)+(m1=ms) +y=1

where true and false are equated respectively with 1 and 0.
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Rules for Response Properties

Rule J-RESP (for a just transition 7 € J)

JI. O(p—(qVe))
J2. {e} T {qV ¢}

J3. {¢} 7 {q}
J4. O(e — (g V En(1)))
O(p — <©q)

This is a “one-step” rule that relies on a helpful just transition.
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Rules for Response Properties (cont.)

Analogously, there is a one-step rule that relies on a helpful
compassionate transition.

Rule C-RESP (for a compassionate transition 7 € C)

Cl. O(p—(qV )
C2. {¢} T {qV e}

C3. {v} 7 {q}
Cd. T —{r}F0O(p = <O(qV En(7)))
O(p — ©q)

Premise C4 states that the proof obligation should be carried out for
a smaller program with 7 — {7} as the set of transitions.
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Rules for Response Properties (cont.)

Rule M-RESP (monotonicity) and Rule T-RESP (transitivity)

O(p — r),0(t — q) O(p — <r)
O(r — <t) O(r — <q)
O(p — <©q) O(p — <©q)

These rules belong to the part for proving general temporal validity.
They are convenient, but not necessary when we have a relatively
complete rule that reduce program validity directly to assertional
validity.
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Rules for Response Properties (cont.)

A ranking function maps finite sequences of states into a
well-founded set.

Rule W-RESP (with a ranking function ¢)
WL O(p = (qV¢))

W2. O([pA (0 =a)] = OlgV(pAd < a)])
O(p — <©q)
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Rules for Response Properties (cont.)

Let 7 ={m, -+ ,7n}. @ denotes 1 VoV ---Vp,and d is a
ranking function.

Rule F-RESP
F1. O(p— (g V)
fori=1--- 'm

F2. {oin(6=a)} T {qgV (oA (0 <a))V(piA(d=a)}
F3. {oin(0=a)} 7 {gV(pA(6d<a))}
J4. O(pi — (qV En(1y))),if € T
C4. T —{n}F0O(ei = (g V En(r;))),if ;€ C
O(p — <©q)

Rule F-RESP is (relatively) complete for proving the P-validity of any
response formula of the form O(p — <©q).
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Rules for Reactivity Properties

Rule B-REAC

BL. O(p— (q V)

B2 {pA(d=0a)} T {qgV(pA(d=a))}

B3. O([eA(0=a)Ar] = OlgV (6 < a)])
O((p AOCr) — <©q)

For programs without compassionate transitions, Rule B-REAC is
(relatively) complete for proving the P-validity of any (simple,
extended) reactivity formula of the form O((p A OCr) — <©q).
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Fair Discrete Systems

An FDS D is a tuple (V,0,p, J,C):
V C V: A finite set of typed , containing data
and control variables.
© : The initial condition, an assertion characterizing the initial
states.
p . The transition relation, an assertion relating the values of
the state variables in a state to the values in the next state.

J ={J1, - ,Jk} : A set of justice requirements (weak
fairness).
C={(p1,91), -+ ,{Pn,qn)} : A set of compassion requirements

(strong fairness).
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Fair Discrete Systems (cont.)

So, FDS is a slight variation of the model of fair transition
system.

The main difference between the FDS and FTS models is in the
representation of fairness constraints.

FDS enables a unified representation of fairness constraints
arising from both the system being verified, and the temporal

property.
A computation of D is an infinite sequence of states
0 = S, 81,5, - - - satisfying Initiation, Consecution, Justice, and

Compassion conditions.
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Program Mux-Sem as an FDS

Program MUX-SEM: mutual exclusion by a semaphore.

s : natural initially s =1

lh : loop forever do mg : loop forever do
i : remainder; my : remainder;
h . request(s); | my @ request(s);
L : critical; ms : critical,
ly . release(s); my : release(s);

request(s) = (await s > 0:s5:=s5—1)
release(s) Ssi=s+1
C: {(at-h ANs>0,at_k),(at_my A's > 0,at_ms)}
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