
Theory of Computation [Compiled on May 4, 2006] Spring 2006

Suggested Solutions to Midterm Problems

1. (a) Give a symmetric and transitive but not reflexive binary relation on A = {a, b, c, d}
that includes {(a, b), (b, c)}; it may be a good idea to represent the relation by a directed
graph.

Solution. (�·�)

R = {(a, b), (b, c), (a, c), (b, a), (c, b), (c, a), (a, a), (b, b), (c, c)}. (Note: {d, d} 6∈ R.) 2

(b) Let R = {(a, c), (b, c), (b, d)} be a binary relation on A = {a, b, c, d, e}. Find the
smallest equivalence relation on A that includes R; again, it may be a good idea to
represent the relation by a directed graph.

Solution. (�·�)

R = {(a, c), (b, c), (b, d), (c, a), (c, b), (d, b), (a, b), (b, a), (a, d), (d, a), (c, d), (d, c),
(a, a), (b, b), (c, c), (d, d), (e, e)}. 2

2. (a) Draw the state diagram of an NFA, with as few states as possible, that recognizes
{w ∈ {0, 1}∗ | w contains 101 as a substring or ends with 1}. The fewer states your NFA
has, the more points you will be credited for this problem. (5 points)

Solution. (�·�)

0.1

0 11

0.1

qo q1 q2 q3

2

(b) Convert the NFA in (a) systematically into an equivalent DFA (using the procedure
discussed in class); do not attempt to optimize the number of states. (10 points)

Solution. (�·�)

1

1

0

1

0

10

0

1

1

1

0

0

q0

qoq1

qoq2

q0q1q3

q0q2q3

qoq3

2

3. (a) Draw the state diagram of a DFA, with as few states as possible, that recognizes
{w ∈ {0, 1}∗ | w does not contain 101 or 010 as a substring}. The fewer states your DFA
has, the more points you will be credited for this problem. (10 points)

Solution. (�·�)

0

1

0 0 0

1

1

0.1

1

1

0

q0

q1

q2

q3

q4

q5

2

(b) Translate the DFA in (a) systematically to an equivalent context-free grammar (using
the procedure discussed in class), which is called regular grammar. (5 points)

Solution. (�·�)

A0 → 1A1 | 0A2 | ε
A1 → 0A3 | 1A1 | ε
A2 → 0A2 | 1A4 | ε
A3 → 0A2 | ε
A4 → 1A1 | ε

2

2

4. Write a regular expression for the language in Problem 3.

Solution. There are quite a few equivalent regular expressions for the language, depending
on how you carry out the conversion steps. Below are a few snapshots of the conversion
with the assistance of JFLAP.

1

0

1 0.1

1
0

λ

λ

1
0

λ

1

0
λ

λ

λ

0

q0

q1

q2

q3

q4

q5

q6

q7

Put empty transitions between states with no transitions. 47 more empty transitions needed.
Reform Transitions

1ø

ø

ø

ø

ø

0

λ

1

ø

ø

ø

ø ø

ø

ø

ø

0

øø

ø

ø

øø

ø

λ

1

ø

ø

ø

ø

λ

ø

øø

ø
ø λ0

ø

λ
øø

ø

0

ø

ø

ø

λ

0.1

ø

ø

0

ø

1

ø

ø

ø

1
ø

ø

ø

øø
q0

q1

q2

q3

q4

q5

q6

q7

Use the collapse state tool to remove nonfinal, noninitial states. 6 more removals needed.
Remove States

ø

ø

1 λ+0

0

1

ø

ø

11 000

ø

λ

λ+1

ø

ø q1

q2

q6 q7

Use the collapse state tool to remove nonfinal, noninitial states. 2 more removals needed.
Remove States

ø

ø

λ+0+000*(λ+1)
ø

ø

1+00*11

λ+00*(λ+1)

ø

1+000*11

q1

q6 q7

Use the collapse state tool to remove nonfinal, noninitial states. 1 more removals needed.
Remove States

ø ø

λ+00*(λ+1)+(1+00*11)(1+000*11)*(λ+0+000*(λ+1))

ø
q6 q7

λ+00*(λ+1)+(1+00*11)(1+000*11)*(λ+0+000*(λ+1))
Generalized Transition Graph Finished!

2

3

5. A synchronizing sequence for a DFA M = (Q,Σ, δ, q0, F) and some “home” state h ∈ Q is
a string s ∈ Σ∗ such that, for every q ∈ Q, δ(q, s) = h. A DFA is said to be synchronizable
if it has a synchronizing sequence for some state. Try to find a 4-state synchronizable DFA
with a synchronizing sequence as long as possible. The longer the synchronizing sequence
is, the more points you will be credited for this problem.

Solution. Though not clearly stated in the problem, the synchronizing sequence we seek
should be minimal in the sense that none of its proper substrings is also a synchronizing
sequence. (Otherwise, the problem is not very interesting.) Below is a 4-state synchro-
nizable DFA with a minimal synchronizing sequence of length 5, namely 01010. (Other
4-state synchronizable DFAs with a longer minimal synchronizing sequence might exist.)

1
10

1

0

0

0 1

q0 q1

q2q3

2 Note: the final state is not marked, as it is irrelevant.

6. Draw the state diagram of a pushdown automaton (PDA) that recognizes the following
language: {w | w ∈ {0, 1}∗ and w has more 0’s than 1’s}. Please make the PDA as simple
as possible and explain the intuition behind the PDA.

Solution. (�Z!)

0 , 1 ; λ

λ , λ ; $ 1 , λ ; 1

0 , λ
 ; 0

1 , 0 ; λ

1 , λ ; 1
1 , $; 1$

λ , 0 ; λ

0 , $; 0$

0 , λ ; 0

q0 q1

q2

q3

q4

2

7. Prove that, if C is a context-free language and R a regular language, then C ∩ R is
context-free. (Hint: combine the finite control part of a PDA and that of an NFA.)

Solution. (�Z!)

4

Prove by construction:
We run a finite automaton “in parallel” with a PDA, and the result is another PDA.
Formally, let

P = (QP ,
∑

,Γ, δP , qP , Z0, FP)

be a PDA that accepts L (by final state), and let

A = (QA,
∑

, δA, qA, FA)

be a DFA for R. Construct PDA

P ′ = (QP ×QA,
∑

,Γ, δ, (qP , qA), FA)

where δ((q, p), a, X) is defined to be the set of all pairs ((r, s), γ) such that:

1. s = δ̂A(p, a) and

2. (r, γ) ∈ δP (q, a, X).

2

8. For two given languages A and B, define A � B = {xy | x ∈ A and y ∈ B and |x| = |y|}.
Prove that, if A and B are regular, then A � B is context-free. (Hint: construct a PDA
where the stack is used to ensure that x and y are of equal length.)

Solution. Given finite-state automata NA and NB respectively for A and B, the basic
idea is to construct a PDA for recognizing A � B that first simulates NA and then non-
deterministically switchs to simulate NB. The PDA counts the number of symbols while
simulating NA by pushing a marker onto the stack whenever it reads an input symbol and
it later cancels out the markers with the input symbols while simulating NB.

Suppose NA = (QA,Σ, δA, qA, FA) and NB = (QB,Σ, δB, qB, FB), assuming A and B have
the same alphabet. We construct the PDA M = (Q,Σ,Γ, δ, qstart, {qaccept}) for A � B as
follows:

• Q = {qstart, qaccept} ∪QA ∪QB, where qstart, qaccept 6∈ QA ∪QB.

• Γ = {x, $}.

• δ is defined as follows.

δ(qstart, ε, ε) = {(qA, $)}
δ(q, a, ε) = {(q′, x) | q′ ∈ δA(q, a)} q ∈ QA and a 6= ε
δ(q, ε, ε) = {(q′, ε) | q′ ∈ δA(q, ε)} q ∈ QA

δ(q, ε, ε) = {(qB, ε)} q ∈ FA

δ(q, a, x) = {(q′, ε) | q′ ∈ δB(q, a)} q ∈ QB and a 6= ε
δ(q, ε, ε) = {(q′, ε) | q′ ∈ δB(q, ε)} q ∈ QB

δ(q, ε, $) = {(qaccept, ε)} q ∈ FB

δ(q, a, t) = ∅ otherwise

5

It should be clear that L(M) = A �B; we omit the detailed proof. 2

9. Prove, using the pumping lemma, that {x#wxy | w, x, y ∈ {a, b}∗} is not context-free.
(Hint: consider s = apbp#apbp, where p is the pumping length.)

Solution. Following the hint, we take s to be apbp#apbp, where p is the pumping length,
and show that s cannot be pumped. There are basically three ways to divide s into uvxyz

such that |vy| > 0 and |vxy| ≤ p:

Case 1: vxy falls within the first occurrence of apbp (before #). No matter how we divide
s, when we pump up, the substring before # will become longer than the one after # and
the whole string cannot belong to the language.

Case 2: vxy falls within the substring bp#ap. Neither v nor y may contain #, otherwise
we will get more than one #’s when we pump up the string. So, s must be divided as
uvxyz = (apbp−j−k)(bj)(bk#al)(am)(ap−l−mbp), where j, k, l,m ≥ 0 and j and m can not
both be 0. If j > 0, we pump up to get uv2xy2z = (apbp−j−k)(b2j)(bk#al)(a2m)(ap−l−mbp).
The substring before # will have more b’s than the one after # and hence the whole
string cannot belong to the language. If m > 0, we pump down to get uv0xy0z =
(apbp−j−k)(ε)(bk#al)(ε)(ap−l−mbp). The substring before # will have more a’s than the
one after # and hence the whole string cannot belong to the language.

Case 3: vxy falls within the second occurrence of apbp (after #). No matter how we divide
s, when we pump down, the substring after # will become shorter than the one before #
and the whole string cannot belong to the language.

2

10. Consider the following context-free grammar:

S → SS | aSaSb | aSbSa | bSaSa | ε

Prove that every string over {a, b} with twice as many a’s as b’s (including the empty
string) can be generated from S. (Hint: by induction on the length of a string.) (bonus
10 points)

Solution. The proof is by induction on the length |s| of a string s where the number of
a’s is twice the number of b’s. It is apparent that |s| equals 3n for some n ≥ 0.

Base case (|s| = 0 or |s| = 3): When |s| = 0, s is the empty string, which can be generated
by the rule S → ε. When |s| = 3, there are three possible strings that satisfy the condition,
namely aab, aba, and baa. All of them can be generated from S. For instance, aab can be
generated from S as follows: S ⇒ aSaSb ⇒ aaSb ⇒ aab.

Inductive step (|s| > 3): Symbols in the string s may be divided (not necessarily consecu-
tive in positions) into groups of two a’s and one b so that every symbol belongs to exactly
one group. If we scan s symbol by symbol from left to right and try to divide the symbols
into groups of two a’s and one b as soon as that becomes possible, either we will reach a

6

point before the end of s where all symbols so far have been successfully grouped or such
grouping is never completed until we reach the very last symbol of s.

Case 1: Scanning left to right, we reach a point before the end of s where all symbols
so far can be successfully grouped. Let s = xy such that scanning the last symbol of x

defines the point we have reached, i.e., x is the shortest prefix of s that has twice as many
a’s as b’s. Clearly, the suffix y must also have twice as many a’s as b’s. From the induction
hypothesis, both x and y can be generated from S. It follows that s can be generated
from S as follows: S ⇒ SS ⇒∗ xS ⇒∗ xy

Case 2: The grouping of two a’s and one b has never been completed until we reach the
very last symbol of s. To help the analysis, we define balance(x) for any string x over
{a, b} as follows:

balance(x) =

0 if x = ε
balance(y) + 1 if x = ya
balance(y)− 2 if x = yb

It is clear that balance(x) = 0 iff x has twice as many a’s as b’s. In the case under
consideration, while we scan s from left to right, we have never seen a non-empty proper
prefix x of s such that balance(x) is 0.

We claim that s cannot be of the form byb. First we observe that balance(b) = −2 and
balance(by) must be 2 (for balance(byb) to be 0). An occurrence of a helps increase the
value of balance by 1 as we scan the string from left to right. To climb up from −2 to
2, we must pass through 0. So, there would have to be a non-empty proper prefix x of
s = byb such that balance(x) = 0, which is a contradiction. Now, we are left with three
forms of s, namely aya, ayb, and bya, to consider. We tackle the case of ayb; others may
be treated in a similar way.

If s = ayb and no non-empty proper prefix x of s exists such that balance(x) is 0, we claim
that y must be of the form aw; otherwise, balance(ab) = −1 and the value of balance would
to pass through 0 at least once before reaching 2 at s = ay, a contradiction. Therefore, s

can be divided as aawb where balance(w) must be 0. From the induction hypothesis, w

can be generated from S. It follows that s = aawb can be generated from S as follows:
S ⇒ aSaSb ⇒ aaSb ⇒∗ aawb.

2

Appendix

• Properties of a binary relation R on A:

– R is reflexive if for every x ∈ A, xRx.

– R is symmetric if for every x, y ∈ A, xRy if and only if yRx.

– R is transitive if for every x, y, z ∈ A, xRy and yRz implies xRz.

7

• If A is a context-free language, then there is a number p such that, if s is a string in A

and |s| ≥ p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:
(1) for each i ≥ 0, uvixyiz ∈ A, (2) |vy| > 0, and (3) |vxy| ≤ p.

8

