Theory of Computing [Compiled on May 26, 2020] Spring 2020

Suggested Solutions to Midterm Problems

1. Let L be a language over ¥ (i.e., L C ¥*). Two strings « and y in ¥* are distinguishable
by L if, for some string z in ¥*, exactly one of xz and yz is in L. When no such z exists,
i.e., for every z in X*, either both of xz and yz or neither of them are in L, we say that
x and y are indistinguishable by L. Is indistinguishability by a language an equivalence
relation (over ¥*)? Please justify your answer.

Solution. Let us refer to the “indistinguishability by a language L” relation as Ry. Ry is
an equivalence relation, as it satisfies the following three conditions:

e Reflexivity (for every = in ¥*, xRpx): For every w in ¥* zw and zw are identical
and either both or neither of them are in L. Hence, xRy x.

e Symmetry (for every z and y in ¥*, zRpy if and only if yRrx): If xRy, i.e., for
every w in ¥, either both of zw and yw or neither of them are in L, then, for every
w in ¥*, both of yw and zw or neither of them are in L and hence yRyx; and vice
versa.

e Transitivity (for every z, y, and z in ¥*, xRpy and yRyz implies Rpz): Suppose
xRrpy and yRyz, i.e., for every w in ¥*, (a) either both of xw and yw or neither of
them are in L and (b) either both of yw and zw or neither of them are in L. If both
of zw and yw are in L, then both of yw and zw are also in L and hence both of zw
and zw are in L. If neither of xw and yw are in L, then neither of yw and zw are
in L and hence neither of xw and zw are in L. So, for every w in X*, either both of
zw and zw or neither of them are in L and hence xRy z.

O

2. Give the state diagrams of DFAs, with as few states as possible, recognizing the following
languages.

(a) {w € {0,1}* | w begins with a 1 and also ends with a 1}.

Solution.

)

1 0
6/0\
(D —— (=)
>
1
0
(Do

(b) {w € {0,1}* | w doesn’t contain the substring 101}.

Solution.

3. Let L = {w € {0,1}* | w contains 101 as a substring or ends with a 1}.

(a) Draw the state diagram of an NFA, with as few states as possible, that recognizes
L. The fewer states your NFA has, the more points you will be credited for this
problem.

Solution.

0,1 0,1

O

(b) Give a regular expression that describes L. The shorter your regular expression is,
the more points you will be credited for this problem.

Solution. (0U1)*1(01(0U1)*Ue) or £*1(01X*Ue), where X is a shorthand for (0U1).
O

4. For languages A and B, let the shuffle of A and B be the language {w | w = a1b; - - - axby,
where ay---ar, € A and by - b, € B, each a;,b; € ¥*}. Show that the class of regular
languages is closed under shuffle.

Solution. Let Mg = (Qa,X,04,q4,F4) and Mp = (Qp,%, 95,95, Fg) be two DFAs that
recognize A and B, respectively. An NFA M = (Q, %, 6, qo, F') that, in each step, simulates
either a step of M4 or Mp will recognize the shuffle of A and B. Formally, it is defined
as follows:

b Q = QA X QB7
e i((z,y),a) ={(0a(x,a),y), (z,0p(y,a))} for every z € Qa,y € Qp,a € 3,
® g0 = (q4,9B),
o '=Fy x Fpg.
O

5. Consider the following CFG discussed in class, where for convenience the variables have
been renamed with single letters.

E4+T|T
TxF|F

FE
T
F (E) |a

Ll

(a) (10 points) Give the (leftmost) derivation and parse tree for the string (a + a) x (a).

Solution.

The leftmost derivation The parse tree

T

TxF

FxF

(E)x F

(E+T) ><F

(T+T) x

(F+T)xF E
(a+T) x |
Ea+F) T
(

(

(

(

a+a) % \
a+a) X () F
a+a)x(T)

) X (F)

) x (a)

a—+a
a-+a

S O 2 2 0 N S R A

(a + a) x (a)
O

(b) (10 points) Convert the grammar into an equivalent PDA (that recognize the same
language).

Solution.

&,$—e|l o ToF

Y
@ @O

O

6. Draw the state diagram of a PDA that recognizes the following language: {w € {0,1}* |
w has twice as many 1s as Os}. Please make the PDA as simple and deterministic as
possible and explain the intuition behind the PDA.

Solution. A PDA that recognizes the language is shown below. The basic idea is to cancel
out every two 1s by a subsequent 0 or the other way around, using the stack to remember
outstanding (yet-to-be-cancelled-out) occurrences of 0 or 1. The case when a 0 is read
with a 1 outstanding on the stack is effectively the same as a 0 immediately followed by
a 1, leaving a 0 on the stack to be cancelled out by a subsequent 1. So, when reading
a 1, the PDA pushes a 1 onto the stack or pops a 0 from the stack. When reading a 0,
the PDA pushes two 0s onto the stack, pops two 1s from the stack, or (to allow the case
when a 0 is read with a 1 outstanding on the stack) pops a 1 from and pushes a 0 onto
the stack.

The PDA above is simple enough, but highly nondeterministic. For instance, while there
is an outstanding 0 on the stack, the PDA may choose to push a 1 (rather than correctly
cancelling out the 0) when reading a 1, even though this choice will turn out to be futile.
The following is a more deterministic PDA for the same language.

7. Prove each of the following statements:

(a)

()

(2 points) The class of context-free languages is closed under union.

Solution. Let A and B be two context-free languages. Suppose they may be generated
by CFGs (V4,%,Ra,S4) and (VB, %, Rp, Sp) respectively, where V4 and Vp are
disjoint. Then, (V4 U Vp, X, {S — Sa | Sp} UR4 U Rp,S) will be a CFG that
generates L(A) U L(B). O

(4 points) The class of context-free languages is not closed under intersection.

Solution. Let A = {a™b"c¢™ | n,m > 0} and B = {a™b"c" | n,m > 0}, which are
context free. AN B = {a"b"c™ | n > 0} is not context free. O

(4 points) The class of context-free languages is not closed under complement.

Solution. Intersection may be expressed in terms of complement and union: ANB =

AUB. From (a) and (b), the class of context-free languages is closed under the
union operation, but it is not closed under the intersection operation. If the class of
context-free languages were closed under the complement operation, then it would
be closed under intersection, contradicting the result in (b). a

8. Let A be the language of all palindromes over {0, 1} with equal numbers of 0s and 1s.
Prove, using the pumping lemma, that A is not context free. (Note: a palindrome is a
string that reads the same forward and backward.)

Solution. We take s to be 1P0P0P1P where p is the pumping length, and show that s cannot
be pumped. There are basically three ways to divide s into uvxyz such that |vy| > 0 and
lvzy| < p:

Case 1: vzy falls (entirely) within the first occurrence of 170P. No matter what strings v
and y get from the division, when we pump down (i.e., i = 0), we will lose some 1s or 0s
(or both) in the resulting string s’. If we lose some 1s, then there will not be a sufficient
number of 1s to match the 17 in the suffix 0”1”7 and s’ is on longer a palindrome. If all 1s
remain, then we must lose some Os and there will be fewer Os than 1s in s’

Case 2: vzy falls within the substring 0P0P. No matter what strings v and y get from the
division, when we pump down (i.e., i = 0), there will be fewer Os than 1s in the resulting
string.

Case 3: vy falls within the second occurrence of 0P1P. This is analogous to Case 1.
O

9. Find a regular language A, a non-regular but context-free language B, and a non-context-
free language C over {0,1} such that C C B C A.

Solution. A = {0190% | 4,5,k > 0} is regular. B = {0'190% | i,j,k > 0 and i < j} is
context-free but not regular. C' = {0°170% | 4,5,k > 0 and i < j < k} is not context-free.
It is apparent that C C B C A. O

Appendix
e (Pumping Lemma for Context-Free Languages)
If A is a context-free language, then there is a number p such that, if s is a string in A
and |s| > p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:
1. for each i > 0, uv'zy'z € A,
2. |vy| >0, and
3. |vzy| < p.

