
Theory of Computing [Compiled on May 16, 2018] Spring 2018

Suggested Solutions to Midterm Problems

1. Give the state diagrams of DFAs, with as few states as possible, recognizing the following
languages.

(a) {w ∈ {0, 1}∗ | w begins with a 0 and ends with a 1}.
Solution.

q0 q1 q2

q3

0

1

0

1

1

0

0, 1

2

(b) {w ∈ {0, 1}∗ | w doesn’t contain the substring 011}.
Solution.

qx qx0 qx01 q011

1

0

0

1

0

1

0, 1

2

2. Let L = {w ∈ {0, 1}∗ | w contains 011 as a substring or ends with a 1}.

(a) Draw the state diagram of an NFA, with as few states as possible, that recognizes
L. The fewer states your NFA has, the more points you will be credited for this
problem.

Solution.

q0 q1 q2 q3

q4

0, 1

0

1

1 1

0, 1

2

1

(b) Convert the preceding NFA systematically into an equivalent DFA (using the proce-
dure discussed in class). Do not attempt to optimize the number of states, though
you may omit the unreachable states.

Solution.

{q0} {q0, q1} {q0, q2, q4}

{q0, q4} {q0, q3, q4} {q0, q1, q3} {q0, q2, q3, q4}

1

0

0

1

0

10

1 1

0

0

1

1

0

2

3. Let L = {1p | p is a prime number less than 22
10}. Is L a regular language? Why or why

not?

Solution. Any finite set of strings is a regular language, as we can easily construct an NFA
for each of the strings and take the union of all such NFAs to obtain the final NFA that
recognizes the language. L here is finite and hence regular. 2

4. For languages A and B, let the shuffle of A and B be the language {w | w = a1b1 · · · akbk,
where a1 · · · ak ∈ A and b1 · · · bk ∈ B, each ai, bi ∈ Σ∗}. Show that the class of regular
languages is closed under shuffle.

Solution.

Let MA = (QA,Σ, δA, qA, FA) and MB = (QB,Σ, δB, qB, FB) be two DFAs that recognize
A and B, respectively. An NFA M = (Q,Σ, δ, q0, F) that, in each step, simulates either a
step of MA or MB will recognize the shuffle of A and B. Formally, it is defined as follows:

• Q = QA ×QB,

• δ((x, y), a) = {(δA(x, a), y), (x, δB(y, a))} for every a ∈ Σ, x ∈ QA, y ∈ QB,

• q0 = (qA, qB),

• F = FA × FB.

2

5. A synchronizing sequence for a DFA M = (Q,Σ, δ, q0, F) and some “home” state h ∈ Q is a
string s ∈ Σ∗ such that, for every q ∈ Q, δ(q, s) = h. A DFA is said to be synchronizable if
it has a synchronizing sequence for some state. Prove that, if M is a k-state synchronizable
DFA, then it has a synchronizing sequence of length at most k3. (Note: δ(q, s) equals the
state where M ends up when M starts from state q and reads input s.)

Solution. Suppose a k-state DFA M is synchronizable. Starting simultaneously from any
two different states of M , there must exist some input string that can bring the two states

2

to the same state; otherwise, we have a contradiction (M would not be synchronizable).
How long does that string need to be? There are at most k(k−1) pairs of different states,
so the shortest possible input string needs to be at most k(k − 1) symbols long.

Now starting simultaneously from the k states of M , an appropriate string of length at
most k(k−1) will reduce the number of different states to k−1. Repeat this (with possibly
different input strings in different stages) k − 2 more times and the number of states will
eventually reduce to one. The concatenation of the input strings from the k − 1 stages is
a synchronizing sequence of length at most k(k − 1)× (k − 1) < k3. 2

6. Consider the following CFG discussed in class, where for convenience the variables have
been renamed with single letters.

E → E + T | T
T → T × F | F
F → (E) | a

Give the (leftmost) derivation and parse tree for the string (a+ (a))× a.

Solution.

The leftmost derivation The parse tree

E ⇒ T
⇒ T × F
⇒ F × F
⇒ (E)× F
⇒ (E + T)× F
⇒ (T + T)× F
⇒ (F + T)× F
⇒ (a+ T)× F
⇒ (a+ F)× F
⇒ (a+ (E))× F
⇒ (a+ (T))× F
⇒ (a+ (F))× F
⇒ (a+ (a))× F
⇒ (a+ (a))× a

E

T

F

a×

T

F

)

E

T

F

)

E

T

F

a(+

E

T

F

a(

2

7. Draw the state diagram of a pushdown automaton (PDA) that recognizes the following
language: {w ∈ {a, b, c}∗ | the number of a’s in w equals that of b’s or c’s} (no restric-
tion is imposed on the order in which the symbols may appear). Please make the PDA as
simple as possible and explain the intuition behind the PDA.

Solution. A PDA that recognizes the language is shown below. In the intial state, the
PDA nondeterministically chooses to check whether the number of a’s equals to that of

3

b’s (q1) or c’s (q2). It accepts the input if one of the two checks passes. Take state q1 for
example. State q1 reacts only to characters a and b. As the input symbols come in no
specific order, the number of a’s may exceed that of b’s at any point and vice versa. In
the first case, it pushes an a onto the stack if the next symbol is an a and pops an a out
of the stack if the next symbol is a b; analogously in the second case.

q0

q1 q2

q3

ε, ε→ $ ε, ε→ $
a, ε→ a
a, b→ ε
b, ε→ b
b, a→ ε
c, ε→ ε

ε, $→ ε

a, ε→ a
a, c→ ε
c, ε→ c
c, a→ ε
b, ε→ ε

ε, $→ ε

2

8. For two given languages A and B, define A � B = {xy | x ∈ A and y ∈ B and |x| = |y|}.
Prove that, if A and B are regular, then A � B is context-free. (Hint: construct a PDA
where the stack is used to ensure that x and y are of equal length.)

Solution. Given NFAs NA and NB respectively for A and B, the basic idea of constructing
a PDA for recognizing A �B is to first simulate NA and then nondeterministically switch
to simulate NB. To ensure that |x| = |y|, the PDA counts the number of symbols while
simulating NA by pushing a marker onto the stack whenever it reads an input symbol and
it later cancels out the markers with the input symbols while simulating NB.

Suppose NA = (QA,Σ, δA, qA, FA) and NB = (QB,Σ, δB, qB, FB), assuming A and B have
the same alphabet. The PDA M = (Q,Σ,Γ, δ, qstart, {qaccept}) for A�B is formally defined
as follows:

• Q = {qstart, qaccept} ∪QA ∪QB, where qstart, qaccept 6∈ QA ∪QB.

• Γ = {x, $}.
• δ is defined as follows.

δ(qstart, ε, ε) = {(qA, $)}
δ(q, a, ε) = {(q′, x) | q′ ∈ δA(q, a)} q ∈ QA and a 6= ε
δ(q, ε, ε) = {(q′, ε) | q′ ∈ δA(q, ε)} q ∈ QA

δ(q, ε, ε) = {(qB, ε)} q ∈ FA

δ(q, a, x) = {(q′, ε) | q′ ∈ δB(q, a)} q ∈ QB and a 6= ε
δ(q, ε, ε) = {(q′, ε) | q′ ∈ δB(q, ε)} q ∈ QB

δ(q, ε, $) = {(qaccept, ε)} q ∈ FB

δ(q, a, t) = ∅ otherwise

It should be clear that L(M) = A �B; we omit the detailed proof. 2

9. Prove that the class of context-free languages is not closed under complement.

Solution. Recall that the class of context-free languages is not closed under intersection.
Let A = {anbncm | n,m ≥ 0} and B = {ambncn | n,m ≥ 0}, which are context free.
A ∩B = {anbncn | n ≥ 0} is not context free.

4

Intersection may be expressed in terms of complement and union: A1 ∩ A2 = A1 ∪A2.
We know that the class of context-free languages is closed under the union operation. If
the class of context-free languages were closed under the complement operation, then it
would be closed under intersection, contradicting the preceding result. 2

10. Prove, using the pumping lemma, that {ambncm×n | m,n ≥ 1} is not context free.

Solution. Assume toward contradiction that p is the pumping length for {ambncm×n |
m,n ≥ 1}, referred to as language A below. Consider a string s = apbpcp

2
in the language.

The string s may be divided as uvxyz such that |vy| ≥ 0 and |vxy| ≤ p in several different
ways. We argue below, for each division case, uvixyiz 6∈ A for some i ≥ 0 and conclude
that s cannot be pumped, leading to a contradiction.

• Case 1: v and y contain only a’s. In this case, when i either goes up or down, uvixyiz
will have a mismatch between the number of c’s (which remains p2) and the product
of the number of a’s (which is less or more than p) and that of b’s (which remains p).

• Case 2: v and y contain only b’s. This is similar to Case 1.

• Case 3: v and y contain only c’s. In this case, when i either goes up or down, uvixyiz
will have more or less than p2 occurrences of c’s, while the product of the number of
a’s and that of b’s remains p2.

• Other cases: either v contains some a’s and some b’s or y contains some b’s and some
c’s. In these cases, when i goes up, uvixyiz will not even be in the form of a∗b∗c∗.

2

Appendix

• (Pumping Lemma for Context-Free Languages)

If A is a context-free language, then there is a number p such that, if s is a string in A
and |s| ≥ p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:

1. for each i ≥ 0, uvixyiz ∈ A,

2. |vy| > 0, and

3. |vxy| ≤ p.

5

