Theory of Computing Introduction and Preliminaries (Based on [Sipser 2006, 2013])

Yih-Kuen Tsay
Department of Information Management
National Taiwan University

What It Is

- The central question:

What are the fundamental capabilities and limitations of computers?

- Three main areas:
, Automata Theory
, Computability Theory
, Complexity Theory

Complexity Theory

Some problems are easy and some hard.
For example, sorting is easy and scheduling is hard.

- The central question of complexity theory: What makes some problems computationally hard and others easy?
We don't have the answer to it.
- However, researchers have found a scheme for classifying problems according to their computational difficulty.
One practical application: cryptography/security.

Dealing with Hard Problems

Options for dealing with a hard problem:

- Try to simplify it (the hard part of the problem might be unnecessary).
Settle for an approximate solution.
- Find a solution that usually runs fast.

Consider alternative types of computation.

Computability Theory

Alan Turing, among other mathematicians, discovered in the 1930s that certain basic problems cannot be solved by computers.

- One example is the problem of determining whether a mathematical statement is true or false.
- Theoretical models of computers developed at that time eventually lead to the construction of actual computers.
The theories of computability and complexity are closely related.
- Complexity theory seeks to classify problems as easy ones and hard ones, while in computability theory the classification is by whether the problem is solvable or not.

Automata Theory

The theories of computability and complexity require a precise, formal definition of a computer.

- Automata theory deals with the definitions and properties of mathematical models of computation.
- Two basic and practically useful models:
* Finite-state, or simply finite, automaton
* Context-free grammar (pushdown automaton)

Sets

Set, element (member), subset, proper subsetMultiset

- Description of a set

The empty set (\emptyset)

- Finite set, infinite set

Union, intersection, complement

- Power set
- Venn diagram

Sets (cont.)

Figure 0.1
Venn diagram for the set of English words starting with " t "

Source: [Sipser 2006]

Sets (cont.)

FIGURE 0.2

Venn diagram for the set of English words ending with "z"

Source: [Sipser 2006]

Sets (cont.)

FIGURE 0.3

Overlapping circles indicate common elements

Source: [Sipser 2006]

Sets (cont.)

(a)

(b)

Figure 0.4

Diagrams for (a) $A \cup B$ and (b) $A \cap B$

Source: [Sipser 2006]

Sequences and Tuples

A sequence of objects is a list of these objects in some order. Order is essential and repetition is also allowed.

- Finite sequences are often called tuples. A sequence with k elements is a k-tuple; a 2-tuple is also called a pair.
- The Cartesian product, or cross product, of A and B, written as $A \times B$, is the set of all pairs (x, y) such that $x \in A$ and $y \in B$.
Cartesian products generalize to k sets, $A_{1}, A_{2}, \ldots, A_{k}$, written as $A_{1} \times A_{2} \times \ldots \times A_{k}$. A^{k} is a shorthand for $A \times A \times \ldots \times A(k$ times).

Functions

-

A function sets up an input-output relationship, where the same input always produces the same output.
If f is a function whose output is b when the input is a, we write $f(a)=b$.
A function is also called a mapping; if $f(a)=b$, we say that f maps a to b.

Functions (cont.)

The set of possible inputs to a function is called its domain; the outputs come from a set called its range.A function is onto if it uses all the elements of the range (it is one-to-one if . . .).
The notation $f: D \longrightarrow R$ says that f is a function with domain D and range R.
More notions and terms: k-ary function, unary function, binary function, infix notation, prefix notation

Relations

A predicate, or property, is a function whose range is \{TRUE,FALSE\}.

- A predicate whose domain is a set of k-tuples $A \times \ldots \times A$ is called a (k-ary) relation on A.
A 2-ary relation is also called a binary relation.

Equivalence Relations

An equivalence relation is a special type of binary relation that captures the notion of two objects being equal in some sense.
A binary relation R on A is an equivalence relation if

1. R is reflexive (for every x in $A, x R x$),
2. R is symmetric (for every x and y in $A, x R y$ if and only if $y R x$), and
3. R is transitive (for every x, y, and z in $A, x R y$ and $y R z$ implies $x R z)$.

Graphs

Undirected graph, node (vertex), edge (link), degree
Description of a graph: $G=(V, E)$
Labeled graph

- Subgraph, induced subgraph

Path, simple path, cycle, simple cycle

- Connected graph
- Tree, root, leaf

Directed graph, outdegree, indegree
Strongly connected graph

Graphs (cont.)

(a)

(b)

Figure 0.12
Examples of graphs

Source: [Sipser 2006]

Graphs (cont.)

figure 0.13

Cheapest nonstop air fares between various cities

Source: [Sipser 2006]

Graphs (cont.)

FIGURE 0.14

Graph G (shown darker) is a subgraph of H

Source: [Sipser 2006]

Graphs (cont.)

(a)

(b)

(c)

FIGURE 0.15
(a) A path in a graph, (b) a cycle in a graph, and (c) a tree

Source: [Sipser 2006]

Graphs (cont.)

FIGURE 0.16
A directed graph

Source: [Sipser 2006]

Graphs (cont.)

FIGURE 0.18
The graph of the relation beats

Source: [Sipser 2006]

Strings and Languages

- An alphabet is any finite set of symbols.
- A string over an alphabet is a finite sequence of symbols from that alphabet.
The length of a string w, written as $|w|$, is the number of symbols that w contains.
The string of length 0 is called the empty string, written as ε.
The concatenation of x and y, written as $x y$, is the string obtained from appending y to the end of x.
A language is a set of strings.
More notions and terms: reverse, substring, lexicographic ordering.

Boolean Logic

Boolean logic is a mathematical system built around the two Boolean values TRUE (1) and FALSE (0).
Boolean values can be manipulated with Boolean operations: negation or NOT (\neg), conjunction or AND (\wedge), disjunction or OR (V).

$$
\begin{array}{lll}
0 \wedge 0 \triangleq 0 & 0 \vee 0 \triangleq 0 & \neg 0 \triangleq 1 \\
0 \wedge 1 \triangleq 0 & 0 \vee 1 \triangleq 1 & \neg 1 \triangleq 0 \\
1 \wedge 0 \triangleq 0 & 1 \vee 0 \triangleq 1 & \\
1 \wedge 1 \triangleq 1 & 1 \vee 1 \triangleq 1 &
\end{array}
$$

- Unknown Boolean values are represented symbolically by Boolean variables or propositions, e.g., P, Q, etc.

Boolean Logic (cont.)

Additional Boolean operations: exclusive or or XOR (\oplus), equality/equivalence (\leftrightarrow or \equiv), implication (\rightarrow).

$$
\begin{array}{lll}
0 \oplus 0 \triangleq 0 & 0 \leftrightarrow 0 \triangleq 1 & 0 \rightarrow 0 \triangleq 1 \\
0 \oplus 1 \triangleq 1 & 0 \leftrightarrow 1 \triangleq 0 & 0 \rightarrow 1 \triangleq 1 \\
1 \oplus 0 \triangleq 1 & 1 \leftrightarrow 0 \triangleq 0 & 1 \rightarrow 0 \triangleq 0 \\
1 \oplus 1 \triangleq 0 & 1 \leftrightarrow 1 \triangleq 1 & 1 \rightarrow 1 \triangleq 1
\end{array}
$$

All in terms of conjunction and negation:

$$
\begin{aligned}
& P \vee Q \equiv \neg(\neg P \wedge \neg Q) \\
& P \rightarrow Q \equiv \neg P \vee Q \\
& P \leftrightarrow Q \equiv(P \rightarrow Q) \wedge(Q \rightarrow P) \\
& P \oplus Q \equiv \neg(P \leftrightarrow Q)
\end{aligned}
$$

Logical Equivalences and Laws

- Two logical expressions/formulae are equivalent if each of them implies the other, i.e., they have the same truth value.
Equivalence plays a role analogous to equality in algebra.
Some laws of Boolean logic:
(Distributive) $P \wedge(Q \vee R) \equiv(P \wedge Q) \vee(P \wedge R)$
(Distributive) $P \vee(Q \wedge R) \equiv(P \vee Q) \wedge(P \vee R)$
(De Morgan's) $\neg(P \vee Q) \equiv \neg P \wedge \neg Q$
(De Morgan's) $\neg(P \wedge Q) \equiv \neg P \vee \neg Q$

Definitions, Theorems, and Proofs

- Definitions describe the objects and notions that we use. Precision is essential to any definition.
- After we have defined various objects and notions, we usually make mathematical statements about them. Again, the statements must be precise.
A proof is a convincing logical argument that a statement is true. The only way to determine the truth or falsity of a mathematical statement is with a mathematical proof.
A theorem is a mathematical statement proven true. Lemmas are proven statements for assisting the proof of another more significant statement.
Corollaries are statements seen to follow easily from other proven ones.

Finding Proofs

Find proofs isn't always easy; no one has a recipe for it.

- Below are some helpful general strategies:

1. Carefully read the statement you want to prove.
2. Rewrite the statement in your own words.
3. Break it down and consider each part separately. For example, $P \Longleftrightarrow Q$ consists of two parts: $P \rightarrow Q$ (the forward direction) and $Q \rightarrow P$ (the reverse direction).
4. Try to get an intuitive feeling of why it should be true.

Tips for Producing a Proof

A well-written proof is a sequence of statements, wherein each one follows by simple reasoning from previous statements in the sequence.

- Tips for producing a proof:

Be patient. Finding proofs takes time.
Come back to it. Look over the statement, think about it, leave it, and then return some time later.
Be neat. Use simple, clear text and/or pictures; make it easy for others to understand.
© Be concise. Emphasize high-level ideas, but be sure to include enough details of reasoning.

An Example Proof

Theorem

For any two sets A and $B, \overline{A \cup B}=\bar{A} \cap \bar{B}$.
Proof. We show that every element of $\overline{A \cup B}$ is also an element of $\bar{A} \cap \bar{B}$ and vice versa.

Forward $(x \in \overline{A \cup B} \rightarrow x \in \bar{A} \cap \bar{B})$:

$$
x \in \overline{A \cup B}
$$

$\rightarrow x \notin A \cup B \quad$, def. of complement
$\rightarrow x \notin A$ and $x \notin B \quad$, def. of union
$\rightarrow x \in \bar{A}$ and $x \in \bar{B}$, def. of complement
$\rightarrow x \in \bar{A} \cap \bar{B} \quad$, def. of intersection
Reverse $(x \in \bar{A} \cap \bar{B} \rightarrow x \in \overline{A \cup B}): \ldots$

Another Example Proof

Theorem

In any graph G, the sum of the degrees of the nodes of G is an even number.

Proof.
Every edge in G connects two nodes, contributing 1 to the degree of each.
Therefore, each edge contributes 2 to the sum of the degrees of all the nodes.
If G has e edges, then the sum of the degrees of the nodes of G is $2 e$, which is even.

Another Example Proof (cont.)

$\begin{aligned} \text { sum } & =2+2+2 \\ & =6\end{aligned}$

$$
=6
$$

$$
\begin{aligned}
\text { sum } & =2+3+4+3+2 \\
& =14
\end{aligned}
$$

Source: [Sipser 2006]

Another Example Proof (cont.)

Every time an edge is added, the sum increases by 2 .

Source: [Sipser 2006]

Types of Proof

- Proof by construction:
prove that a particular type of object exists, by showing how to construct the object.
- Proof by contradiction:
prove a statement by first assuming that the statement is false and then showing that the assumption leads to an obviously false consequence, called a contradiction.
- Proof by induction:
prove that all elements of an infinite set have a specified property, by exploiting the inductive structure of the set.

Proof by Construction

Theorem

For each even number n greater than 2, there exists a 3-regular graph with n nodes.

Proof. Construct a graph $G=(V, E)$ with $n(=2 k \geq 2)$ nodes as follows.
Let V be $\{0,1, \ldots, n-1\}$ and E be defined as

$$
\begin{aligned}
E= & \{\{i, i+1\} \mid \text { for } 0 \leq i \leq n-2\} \cup \\
& \{\{n-1,0\}\} \cup \\
& \{\{i, i+n / 2\} \mid \text { for } 0 \leq i \leq n / 2-1\} .
\end{aligned}
$$

Proof by Contradiction

Theorem

$\sqrt{2}$ is irrational.
Proof. Assume toward a contradiction that $\sqrt{2}$ is rational, i.e., $\sqrt{2}=\frac{m}{n}$ for some integers m and n, which cannot both be even.
$\sqrt{2}=\frac{m}{n}$
, from the assumption
$n \sqrt{2}=m$
, multipl. both sides by n
$2 n^{2}=m^{2}$
, square both sides
m is even
, m^{2} is even
$2 n^{2}=(2 k)^{2}=4 k^{2} \quad$, from the above two
$n^{2}=2 k^{2}$
n is even
, divide both sides by 2
, n^{2} is even
Now both m and n are even, a contradiction.

Example: Home Mortgages

P : the principle (amount of the original loan).
I : the yearly interest rate.
Y : the monthly payment.
M : the monthly multiplier $=1+I / 12$.
P_{t} : the amount of loan outstanding after the t-th month; $P_{0}=P$ and $P_{k+1}=P_{k} M-Y$.

Theorem

For each $t \geq 0$,

$$
P_{t}=P M^{t}-Y\left(\frac{M^{t}-1}{M-1}\right) .
$$

Proof by Induction

Theorem

For each $t \geq 0$,

$$
P_{t}=P M^{t}-Y\left(\frac{M^{t}-1}{M-1}\right)
$$

Proof. The proof is by induction on t.
Basis: When $t=0, P M^{0}-Y\left(\frac{M^{0}-1}{M-1}\right)=P=P_{0}$.

Proof by Induction (cont.)

Induction step: When $t=k+1(k \geq 0)$,

$$
=\begin{aligned}
& P_{k+1} \\
& \left\{\text { definition of } P_{t}\right\} \\
& P_{k} M-Y
\end{aligned}
$$

$=$ \{the induction hypothesis $\}$

$$
\left(P M^{k}-Y\left(\frac{M^{k}-1}{M-1}\right)\right) M-Y
$$

$=\{$ distribute M and rewrite $Y\}$

$$
P M^{k+1}-Y\left(\frac{M^{k+1}-M}{M-1}\right)-Y\left(\frac{M-1}{M-1}\right)
$$

$=$ \{combine the last two terms\}

$$
P M^{k+1}-Y\left(\frac{M^{k+1}-1}{M-1}\right)
$$

