Theory of Computing 2020: Regular Languages

(Based on [Sipser 2006, 2013])
Yih-Kuen Tsay

1 Finite Automata

Finite Automata

- What is a computer?
- Real computers are complicated.
- To set up a manageable mathematical theory of computers, we use an idealized computer called a computational model.
- The finite automaton (finite-state machine) is the simplest of such models.
- It represents a computer with an extremely limited amount of memory.

Finite Automata (cont.)

FIGURE 1.1
Top view of an automatic door

Source: [Sipser 2006]

Finite Automata (cont.)

FIGURE 1.2
State diagram for automatic door controller

Source: [Sipser 2006]

Finite Automata (cont.)

	input signal				
state	CLOSED	CLOSED	OPONT	REAR	BOTH
	OPEN	CLOSED	OPEN	OPOSED	CLOSED
				OPEN	OPEN

FIGURE 1.3
State transition table for automatic door controller

Source: [Sipser 2006]

Finite Automata (cont.)

FIGURE 1.4
A finite automaton called M_{1} that has three states

Source: [Sipser 2006]

Formal Definition

- Though state diagrams are easier to grasp intuitively, we need the formal definition, too.
- A formal definition is precise so as to resolve any uncertainties about what is allowed in a finite automaton.
- It also provides notation for concise and clear expression.

Definition 1 (1.5). A finite automaton is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

1. Q is a finite set of states,
2. Σ is a finite set of symbols (the alphabet),
3. $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function,
4. $q_{0} \in Q$ is the start state, and
5. $F \subseteq Q$ is the set of accept states.

Formal Definition (cont.)

FIGURE 1.6
The finite automaton M_{1}

Source: [Sipser 2006]
A machine accepts a string if the machine stops at an accept state after processing/reading the string symbol by symbol. For instance, M_{1} accepts 011 and 010100 .

Definition of M_{1}

Formally, $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is given as | | 0 | 1 |
| :--- | :--- | :--- |
| q_{1} | q_{1} | q_{2} |
| q_{2} | q_{3} | q_{2} |
| q_{3} | q_{2} | q_{2} |,
4. q_{1} is the start state, and
5. $F=\left\{q_{2}\right\}$.

Language Recognizers

- Let A be the set of all strings that a machine M accepts.
- We say that A is the language of machine M and write $L(M)=A$.
- We also say that M recognizes A (or that M accepts A).
- A machine is said to accept the empty language \emptyset if it accepts no strings.
- Regarding the example automaton M_{1},
$L\left(M_{1}\right)=\{w \mid w$ contains at least one 1 and an even number of 0 s follow the last 1$\}$.

Language Recognizers (cont.)

FIGURE 1.8

State diagram of the two-state finite automaton M_{2}

Source: [Sipser 2006]
Note: $L\left(M_{2}\right)=\{w \mid w$ ends in a 1$\}$
Language Recognizers (cont.)

FIGURE 1.10
State diagram of the two-state finite automaton M_{3}

Source: [Sipser 2006]
Note: $L\left(M_{3}\right)=\{w \mid w$ is the empty string or ends in a 0$\}$

Language Recognizers (cont.)

FIGURE 1.12
Finite automaton M_{4}

Source: [Sipser 2006]
Note: M_{4} accepts strings that start and end with the same symbol.

Language Recognizers (cont.)

FIGURE 1.14

Finite automaton M_{5}

Source: [Sipser 2006]

Formal Definition of Computation

We already have an informal idea of how a machine computes, i.e., how a machine accepts or rejects a string. Below is a formalization.

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a finite automaton and $w=w_{1} w_{2} \ldots w_{n}$ be a string over Σ.
- We say that M accepts w if a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ exists such that

1. $r_{0}=q_{0}$,
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for $i=0,1, \ldots, n-1$, and
3. $r_{n} \in F$.

Regular Languages

Definition 2 (1.16). A language is called a regular language if some finite automaton recognizes it.

- There are a few alternatives for defining regular languages.
- We will see some of them and show that they are all equivalent.

Designing Finite Automata

The "reader as automaton" method:

1. Determine the necessary information needed to be remembered about the string as it is being read.
2. Represent the information as a finite list of possibilities and assign a state to each of the possibilities.
3. Assign the transitions by seeing how to go from one possibility to another upon reading a symbol.
4. Set the start state to be the state corresponding to the possibility associated with having seen 0 symbols so far.
5. Set the accept states to be those corresponding to possibilities where you want to accept the input read so far.

Designing Finite Automata (cont.)

Consider constructing an automaton that recognizes binary strings with an odd number of 1's.

FIGURE 1.18
The two states $q_{\text {even }}$ and $q_{\text {odd }}$

Source: [Sipser 2006]

Designing Finite Automata (cont.)

FIGURE 1.19
Transitions telling how the possibilities rearrange

Source: [Sipser 2006]

Designing Finite Automata (cont.)

FIGURE 1.20
Adding the start and accept states

Designing Finite Automata (cont.)

FIGURE 1.22
Accepts strings containing 001

Source: [Sipser 2006]

2 The Regular Operations

The Regular Operations

- In arithmetic, the basic objects are numbers and the tools for manipulating them are operations such as + and \times.
- In the theory of computation the objects are languages and the tools include operations specifically designed for manipulating them. We consider three operations called regular operations.

Definition 3 (1.23). Let A and B be languages. The three regular operations are defined as follows:

- Union: $A \cup B=\{x \mid x \in A$ or $x \in B\}$.
- Concatenation: $A \circ B=\{x y \mid x \in A$ and $y \in B\}$.
- Star: $A^{*}=\left\{x_{1} x_{2} \ldots x_{k} \mid k \geq 0\right.$ and each $\left.x_{i} \in A\right\}$.
- We will use these operations to study the properties of finite automata.

Closedness

- A collection of objects is closed under some operation if applying the operation to members of the collection returns an object still in the collection.
- We will show that the collection of regular languages is closed under all three regular operations.

Closedness under Union

Theorem 4 (1.25). The class of regular languages is closed under the union operation. In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.

- The proof is by construction. To prove that $A_{1} \cup A_{2}$ is regular, we construct a finite automaton M that recognizes $A_{1} \cup A_{2}$.
- Suppose that a finite automaton M_{1} recognizes A_{1} and another M_{2} recognizes A_{2}.
- Machine M works by simulating both M_{1} and M_{2} and accepting if either simulation accepts.
- As the input symbols arrive one by one, M remembers the state that each machine would be in if it had read up to this point.

Closedness under Union (cont.)

Theorem 5 (1.25). The class of regular languages is closed under the union operation. In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.

- Suppose $\quad M_{1} \quad=\quad\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right) \quad$ recognizes $\quad A_{1} \quad$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognizes A_{2}.
- Construct $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize $A_{1} \cup A_{2}$:

1. $Q=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in Q_{1}\right.$ and $\left.r_{2} \in Q_{2}\right\}$.
2. Σ is the same. (Generalization is possible.)
3. For each $\left(r_{1}, r_{2}\right) \in Q$ and each $a \in \Sigma$, let $\delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right)$.
4. $q_{0}=\left(q_{1}, q_{2}\right)$.
5. $F=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in F_{1}\right.$ or $\left.r_{2} \in F_{2}\right\}$.

Closedness under Concatenation

Theorem 6 (1.26). The class of regular languages is closed under the concatenation operation. In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \circ A_{2}$.

- Proof by construction along the lines of the proof for closedness under union does not work in this case.
- Suppose A_{1} is the set of binary strings containing 001 , while A_{2} is the set of binary strings with an odd number of 1's.
- The binary string 0010011 is in $A_{1} \circ A_{2}$.
- How can a machine, simulating M_{1} and then M_{2}, knows that it should not stop M_{1} and move to M_{2} after seeing the first occurrence of 001 ?
- We resort to a new technique called nondeterminism.

3 Nondeterminism

Nondeterminism

- In a nondeterministic machine, several choices may exist for the next state after reading the next input symbol in a given state.
- The difference between a deterministic finite automaton (DFA) and a nondeterministic finite automaton (NFA):

	\# of next states (per symbol)	input symbols
DFA	1	from Σ
NFA	0,1, or more	from $\Sigma \cup\{\varepsilon\}$

Nondeterminism (cont.)

- Nondeterminism is a useful concept that has had great impact on computation theory.
- As we will show, every NFA can be converted into an equivalent DFA.
- However, constructing NFAs is sometimes easier than directly constructing DFAs. An NFA may be much smaller than its deterministic counterpart, or its functioning may be easier to understand.

Nondeterminism (cont.)

FIGURE 1.27

The nondeterministic finite automaton N_{1}

Source: [Sipser 2006]
Note: N_{1} accepts all strings that contain either 101 or 11 as a substring.

How Does an NFA Compute?

1. If there are multiple choices for the next state, given the next input symbol, the machine splits into multiple copies, all moving to their respective next states in parallel.
2. Additional copies are also created if there are exiting arrows labeled with ε, one copy for each of such arrows. All copies move to their respective next states in parallel, but without consuming any input.
3. If any copy is in an accept state at the end of the input, the machine accepts the input string.
4. If there are input symbols remaining, the preceding steps are repeated.

Deterministic vs. Nondeterministic Comp.

FIGURE 1.28
Deterministic and nondeterministic computations with an accepting branch

Source: [Sipser 2006]

A Computation of N_{1}

FIGURE 1.29
The computation of N_{1} on input 010110

Source: [Sipser 2006]

Example NFA

FIGURE 1.31
The NFA N_{2} recognizing A

Source: [Sipser 2006]
Note: A is the set of all strings over $\{0,1\}$ containing a 1 in the last third position.

Example NFA (cont.)

FIGURE 1.32
A DFA recognizing A

Source: [Sipser 2006]

Example NFA (cont.)

FIGURE 1.34
The NFA N_{3}
Source: [Sipser 2006]
Note: N_{3} accepts all strings of the form 0^{k} where k is a multiple of 2 or 3 .

Example NFA (cont.)

FIGURE 1.36
The NFA N_{4}

Source: [Sipser 2006]
Does N_{4} accept ε ? How about babaa?

Definition of an NFA

- The transition function of an NFA takes a state and an input symbol or the empty string and produces a set of possible next states.
- Let $\mathcal{P}(Q)$ be the power set of Q and let Σ_{ε} denote $\Sigma \cup\{\varepsilon\}$.

Definition 7 (1.37). A nondeterministic finite automaton is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

1. Q is a finite set of states,
2. Σ is a finite alphabet,
3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
4. $q_{0} \in Q$ is the start state, and
5. $F \subseteq Q$ is the set of accept states.

Definition of an NFA (cont.)

Source: [Sipser 2006]

Definition of N_{1}

Formally, $N_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is given as

	0	1	ε
q_{1}	$\left\{q_{1}\right\}$	$\left\{q_{1}, q_{2}\right\}$	\emptyset
q_{2}	$\left\{q_{3}\right\}$	\emptyset	$\left\{q_{3}\right\}$
q_{3}	\emptyset	$\left\{q_{4}\right\}$	\emptyset
q_{4}	$\left\{q_{4}\right\}$	$\left\{q_{4}\right\}$	\emptyset

4. q_{1} is the start state, and
5. $F=\left\{q_{4}\right\}$.

Formal Def. of Nondeterministic Comp.

- Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA and w be a string over Σ.
- We say that N accepts w if we can write $w=y_{1} y_{2} \ldots y_{m}$, where $y_{i} \in \Sigma_{\varepsilon}$, and a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$ exists such that

1. $r_{0}=q_{0}$,
2. $r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right)$, for $i=0,1, \ldots, m-1$, and
3. $r_{m} \in F$.

Equivalence of NFA and DFA

Two machines are equivalent if they recognize the same language.
Theorem 8 (1.39). Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Corollary 9 (1.40). A language is regular if and only if some nondeterministic finite automaton recognizes it.

Equivalence of NFA and DFA (cont.)

Theorem 10 (1.39). Every NFA has an equivalent DFA.

- The idea is to convert a given NFA into an equivalent DFA that simulates the NFA.
- An NFA can be in one of several possible states, as it reads the input.
- If k is the number of states of the NFA, it has 2^{k} subsets of states. Each subset corresponds to one of the possibilities that the simulating DFA must remember.

Equivalence of NFA and DFA (cont.)

Theorem 11 (1.39). Every NFA has an equivalent DFA.

- Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA recognizing some language A.
- Construct $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ to recognize A as follows:

Equivalence of NFA and DFA (cont.)

1. $Q^{\prime}=\mathcal{P}(Q)$.
2. For $R \in Q^{\prime}$ and $a \in \Sigma$, let $\delta^{\prime}(R, a)=\bigcup_{r \in R} \delta(r, a)$.
3. $q_{0}^{\prime}=\left\{q_{0}\right\}$.
4. $F^{\prime}=\left\{R \in Q^{\prime} \mid R\right.$ contains some element of $\left.F\right\}$.

- To allow ε arrows, define for $R \subseteq Q$,

$$
E(R)=\{q \mid q \text { can be reached from } R \text { by } \varepsilon \text { arrows }\}
$$

- Replace $\delta(r, a)$ with $E(\delta(r, a))$ and set q_{0}^{\prime} to be $E\left(\left\{q_{0}\right\}\right)$ in the construction of N.

Equivalence of NFA and DFA (cont.)

FIGURE 1.42
The NFA N_{4}

Source: [Sipser 2006]

Equivalence of NFA and DFA (cont.)

FIGURE 1.43
A DFA D that is equivalent to the NFA N_{4}

Equivalence of NFA and DFA (cont.)

FIGURE 1.44
DFA D after removing unnecessary states

Source: [Sipser 2006]

Closedness under Union

Theorem 12 (1.45). The class of regular languages is closed under the union operation.

- Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognizing A_{1} and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognizing A_{2}.
- Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize $A_{1} \cup A_{2}$ as follows:

Closedness under Union (cont.)

1. $Q=\left\{q_{0}\right\} \cup Q_{1} \cup Q_{2}$.
2. $q_{0}\left(\notin Q_{1} \cup Q_{2}\right)$ is the start state.
3. For $q \in Q$ and $a \in \Sigma_{\varepsilon}, \delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \\ \delta_{2}(q, a) & q \in Q_{2} \\ \left\{q_{1}, q_{2}\right\} & q=q_{0} \text { and } a=\varepsilon \\ \emptyset & q=q_{0} \text { and } a \neq \varepsilon\end{cases}$
4. $F=F_{1} \cup F_{2}$.

Closedness under Union (cont.)

FIGURE 1.46

Construction of an NFA N to recognize $A_{1} \cup A_{2}$

Source: [Sipser 2006]

Closedness under Concatenation

Theorem 13 (1.47). The class of regular languages is closed under the concatenation operation.

- Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognizing A_{1} and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognizing A_{2}.
- Construct $N=\left(Q, \Sigma, \delta, q_{1}, F_{2}\right)$ to recognize $A_{1} \circ A_{2}$ as follows:

1. $Q=Q_{1} \cup Q_{2}$.
2. For $q \in Q$ and $a \in \Sigma_{\varepsilon}$,

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \text { but } q \notin F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \text { and } a \neq \varepsilon \\ \delta_{1}(q, a) \cup\left\{q_{2}\right\} & q \in F_{1} \text { and } a=\varepsilon \\ \delta_{2}(q, a) & q \in Q_{2} .\end{cases}
$$

Closedness under Concatenation (cont.)

FIGURE 1.48
Construction of N to recognize $A_{1} \circ A_{2}$

Closedness under Star

Theorem 14 (1.49). The class of regular languages is closed under the star operation.

- Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognizing A.
- Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize A^{*} as follows:

1. $Q=\left\{q_{0}\right\} \cup Q_{1}$.
2. For $q \in Q$ and $a \in \Sigma_{\varepsilon}$,

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \text { but } q \notin F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \text { and } a \neq \varepsilon \\ \delta_{1}(q, a) \cup\left\{q_{1}\right\} & q \in F_{1} \text { and } a=\varepsilon \\ \left\{q_{1}\right\} & q=q_{0} \text { and } a=\varepsilon \\ \emptyset & q=q_{0} \text { and } a \neq \varepsilon\end{cases}
$$

3. $F=\left\{q_{0}\right\} \cup F_{1}$.

Closedness under Star (cont.)

FIGURE 1.50
Construction of N to recognize A^{*}

Source: [Sipser 2006]

4 Regular Expressions

Regular Expressions

- We can use the regular operations (union, concatenation, star) to build up expressions, called regular expressions, to describe languages.
- The value of a regular expression is a language.
- For example, the value of $(0 \cup 1) 0^{*}$ is the language consisting of all strings starting with a 0 or 1 followed by any number of 0 s . (The symbols 0 and 1 are shorthands for the sets $\{0\}$ and $\{1\}$.)
- Regular expressions have an important role in computer science applications involving text.

Formal Definition of a Regular Expression

Definition 15 (1.52). We say that R is a regular expression if R is

1. a for some $a \in \Sigma$,
2. ε,
3. \emptyset,
4. ($R_{1} \cup R_{2}$), where R_{1} and R_{2} are regular expressions,
5. ($R_{1} \circ R_{2}$), where R_{1} and R_{2} are regular expressions, or
6. $\left(R_{1}^{*}\right)$, where R_{1} is a regular expression.

- A definition of this type is called an inductive definition.
- We write $L(R)$ to denote the language of R.

Example Regular Expressions

Let Σ be $\{0,1\}$.

- $0^{*} 10^{*}=\{w \mid w$ has exactly a single 1$\}$.
- $\Sigma^{*} 1 \Sigma^{*}=\{w \mid w$ has at least one 1$\}$.
- $\Sigma^{*} 001 \Sigma^{*}=\{w \mid w$ contains 001 as a substring $\}$.
- $(\Sigma \Sigma)^{*}=\{w \mid w$ is a string of even length $\}$.
- $0 \Sigma^{*} 0 \cup 1 \Sigma^{*} 1 \cup 0 \cup 1=\{w \mid w$ starts and ends with the same symbol $\}$.
- $(0 \cup \varepsilon)(1 \cup \varepsilon)=\{\varepsilon, 0,1,01\}$.
- $\emptyset^{*}=\{\varepsilon\}$.
$R \cup \emptyset=R, R \circ \varepsilon=R, R \circ \emptyset=\emptyset$, but $R \cup \varepsilon$ may not equal R.

Regular Expressions vs. Finite Automata

Theorem 16 (1.54). A language is regular if and only if some regular expression describes it.

- This theorem has two directions:
- If a language is described by a regular expression, then it is regular.
- If a language is regular, then it is described by a regular expression.
- We prove them separately.

Regular Expressions vs. Finite Automata (cont.)

Lemma 17 (1.55). If a language is described by a regular expression, then it is regular.

1. $R=a$ for some $a \in \Sigma$.
$N=\left(\left\{q_{1}, q_{2}\right\}, \Sigma, \delta, q_{1},\left\{q_{2}\right\}\right)$, where $\delta\left(q_{1}, a\right)=\left\{q_{2}\right\}, \delta(r, b)=\emptyset$ for $r \neq q_{1}$ or $b \neq a$.
2. $R=\varepsilon$.
$N=(\{q\}, \Sigma, \delta, q,\{q\})$, where $\delta(r, b)=\emptyset$ for any r and b.
3. $R=\emptyset$.
$N=(\{q\}, \Sigma, \delta, q, \emptyset)$, where $\delta(r, b)=\emptyset$ for any r and b.
4. $R=R_{1} \cup R_{2}$. Closed under union.
5. $R=R_{1} \circ R_{2}$. Closed under concatenation.
6. $R=R_{1}^{*}$. Closed under star.

Regular Expressions vs. Finite Automata (cont.)

Source: [Sipser 2006]

Regular Expressions vs. Finite Automata (cont.)

Source: [Sipser 2006]

Regular Expressions vs. Finite Automata (cont.)

Lemma 18 (1.60). If a language is regular, then it is described by a regular expression.

- Every regular language is recognized by some DFA.
- We describe a procedure for converting DFAs into equivalent regular expressions.
- For this purpose, we introduce a new type of finite automaton called a generalized nondeterministic finite automaton (GNFA).
- We show how to convert DFAs into GNFAs and then GNFAs into regular expressions.

Regular Expressions vs. Finite Automata (cont.)

FIGURE 1.61
A generalized nondeterministic finite automaton

Regular Expressions vs. Finite Automata (cont.)

FIGURE 1.62
Typical stages in converting a DFA to a regular expression

Source: [Sipser 2006]

Regular Expressions vs. Finite Automata (cont.)

figure 1.63
Constructing an equivalent GNFA with one fewer state

Source: [Sipser 2006]

Definition of a GNFA

Definition 19 (1.52). A generalized nondeterministic finite automaton is a 5 -tuple $\left(Q, \Sigma, \delta, q_{\text {start }}, q_{\text {accept }}\right)$, where

1. Q is the finite set of states,
2. Σ is the input alphabet,
3. $\delta:\left(Q-\left\{q_{\text {accept }}\right\}\right) \times\left(Q-\left\{q_{\text {start }}\right\}\right) \longrightarrow \mathcal{R}$ is the transition function (where \mathcal{R} is the collection of all regular expressions over $\Sigma)$,
4. $q_{\text {start }}$ is the start state, and
5. $q_{\text {accept }}$ is the accept state.

Computation of a GNFA (cont.)

A GNFA accepts a string w in Σ^{*} if $w=w_{1} w_{2} \ldots$ w_{k}, where each w_{i} is in Σ^{*}, and a sequence of states $q_{0}, q_{1}, \ldots, q_{k}$ exists such that

1. $q_{0}=q_{\text {start }}$,
2. $q_{k}=q_{\text {accept }}$, and
3. for each i, we have $w_{i} \in L\left(R_{i}\right)$, where $R_{i}=\delta\left(q_{i-1}, q_{i}\right)$.

Converting a GNFA

1. Let k be the number of states of the input G.
2. If $k=2$, return the label R of the only transition.
3. If $k>2$, select $q_{\text {rip }} \in Q$ different from $q_{\text {start }}$ and $q_{\text {accept }}$.

Let G^{\prime} be ($Q^{\prime}, \Sigma, \delta^{\prime}, q_{\text {start }}, q_{\text {accept }}$), where

$$
Q^{\prime}=Q-\left\{q_{\mathrm{rip}}\right\}
$$

and for any $q_{i} \in Q^{\prime}-\left\{q_{\text {accept }}\right\}$ and any $q_{j} \in Q^{\prime}-\left\{q_{\text {start }}\right\}$,

$$
\delta^{\prime}\left(q_{i}, q_{j}\right)=\left(R_{1}\right)\left(R_{2}\right)^{*}\left(R_{3}\right) \cup\left(R_{4}\right),
$$

where $R_{1}=\delta\left(q_{i}, q_{\text {rip }}\right), R_{2}=\delta\left(q_{\text {rip }}, q_{\text {rip }}\right), R_{3}=\delta\left(q_{\text {rip }}, q_{j}\right)$, and $R_{4}=\delta\left(q_{i}, q_{j}\right)$.
4. Repeat with G^{\prime}.

Converting a GNFA (cont.)

FIGURE 1.67
Converting a two-state DFA to an equivalent regular expression

Source: [Sipser 2006]

Converting a GNFA (cont.)

Source: [Sipser 2006]

5 Nonregular Languages: The Pumping Lemma

Nonregular Languages

- To understand the power of finite automata we must also understand their limitations.
- Consider the language $B=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- To recognize B, a machine will have to remember how many 0 s have been read so far. This cannot be done with any finite number of states, since the number of 0 s is not limited.
- $C=\{w \mid w$ has an equal number of 0 s and 1 s$\}$ is not regular, either.
- But, $D \quad=\quad\{w \quad w \quad$ has equal occurrences of 01 and 10 as substrings $\}$ is regular.

The Pumping Lemma

Theorem 20 (1.70). If A is a regular language, then there is a number p (the pumping length) such that, if s is any string in A and $|s| \geq p$, then s may be divided as $s=x y z$ satisfying:

1. for each $i \geq 0, x y^{i} z \in A$,
2. $|y|>0$, and
3. $|x y| \leq p$.

- Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA that recognizes A.
- We assign the pumping length p to be the number of states of M.
- We show that any string s in A of length at least p may be broken into $x y z$ satisfying the three conditions.

The Pumping Lemma (cont.)

Figure 1.71

Example showing state q_{9} repeating when M reads s

Source: [Sipser 2006]

The Pumping Lemma (cont.)

Figure 1.72
Example showing how the strings x, y, and z affect M

Source: [Sipser 2006]

Example Nonregular Languages

- $B=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$. Let s be $0^{p} 1^{p}$ (when applying the pumping lemma).
- $C=\{w \mid w$ has an equal number of 0 s and 1 s$\}$. Let s be $0^{p} 1^{p}$.
- $F=\left\{w w \mid w \in\{0,1\}^{*}\right\}$. Let s be $0^{p} 10^{p} 1$.
- $D=\left\{1^{n^{2}} \mid n \geq 0\right\}$. Let s be $1^{p^{2}}$.
- $E=\left\{0^{i} 1^{j} \mid i>j\right\}$. Let s be $0^{p+1} 1^{p}$.

