
Theory of Computing 2020: Regular Languages

(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

1 Finite Automata

Finite Automata

• What is a computer?

• Real computers are complicated.

• To set up a manageable mathematical theory of computers, we use an idealized computer called a
computational model .

• The finite automaton (finite-state machine) is the simplest of such models.

• It represents a computer with an extremely limited amount of memory.

Finite Automata (cont.)

Source: [Sipser 2006]

Finite Automata (cont.)

1

Source: [Sipser 2006]

Finite Automata (cont.)

Source: [Sipser 2006]

Finite Automata (cont.)

Source: [Sipser 2006]

Formal Definition

• Though state diagrams are easier to grasp intuitively, we need the formal definition, too.

• A formal definition is precise so as to resolve any uncertainties about what is allowed in a finite
automaton.

• It also provides notation for concise and clear expression.

Definition 1 (1.5). A finite automaton is a 5-tuple (Q,Σ, δ, q0, F), where

2

1. Q is a finite set of states,

2. Σ is a finite set of symbols (the alphabet),

3. δ : Q× Σ −→ Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

Formal Definition (cont.)

Source: [Sipser 2006]

A machine accepts a string if the machine stops at an accept state after processing/reading the string
symbol by symbol. For instance, M1 accepts 011 and 010100.

Definition of M1

Formally, M1 = (Q,Σ, δ, q1, F), where

1. Q = {q1, q2, q3},

2. Σ = {0, 1},

3. δ is given as

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2

,

4. q1 is the start state, and

5. F = {q2}.

Language Recognizers

• Let A be the set of all strings that a machine M accepts.

• We say that A is the language of machine M and write L(M) = A.

• We also say that M recognizes A (or that M accepts A).

• A machine is said to accept the empty language ∅ if it accepts no strings.

• Regarding the example automaton M1,

L(M1) = {w | w contains at least one 1 and an even number of 0s follow the last 1}.

3

Language Recognizers (cont.)

Source: [Sipser 2006]

Note: L(M2) = {w | w ends in a 1}

Language Recognizers (cont.)

Source: [Sipser 2006]

Note: L(M3) = {w | w is the empty string or ends in a 0}

Language Recognizers (cont.)

4

Source: [Sipser 2006]

Note: M4 accepts strings that start and end with the same symbol.

Language Recognizers (cont.)

Source: [Sipser 2006]

Formal Definition of Computation
We already have an informal idea of how a machine computes, i.e., how a machine accepts or rejects a

string. Below is a formalization.

• Let M = (Q,Σ, δ, q0, F) be a finite automaton and w = w1w2 . . . wn be a string over Σ.

• We say that M accepts w if a sequence of states r0, r1, . . . , rn exists such that

1. r0 = q0,

2. δ(ri, wi+1) = ri+1 for i = 0, 1, . . . , n− 1, and

3. rn ∈ F .

Regular Languages

Definition 2 (1.16). A language is called a regular language if some finite automaton recognizes it.

• There are a few alternatives for defining regular languages.

• We will see some of them and show that they are all equivalent.

Designing Finite Automata
The “reader as automaton” method:

1. Determine the necessary information needed to be remembered about the string as it is being read.

2. Represent the information as a finite list of possibilities and assign a state to each of the possibilities.

3. Assign the transitions by seeing how to go from one possibility to another upon reading a symbol.

4. Set the start state to be the state corresponding to the possibility associated with having seen 0 symbols
so far.

5. Set the accept states to be those corresponding to possibilities where you want to accept the input
read so far.

5

Designing Finite Automata (cont.)
Consider constructing an automaton that recognizes binary strings with an odd number of 1’s.

Source: [Sipser 2006]

Designing Finite Automata (cont.)

Source: [Sipser 2006]

Designing Finite Automata (cont.)

Source: [Sipser 2006]

6

Designing Finite Automata (cont.)

Source: [Sipser 2006]

2 The Regular Operations

The Regular Operations

• In arithmetic, the basic objects are numbers and the tools for manipulating them are operations such
as + and ×.

• In the theory of computation the objects are languages and the tools include operations specifically
designed for manipulating them. We consider three operations called regular operations.

Definition 3 (1.23). Let A and B be languages. The three regular operations are defined as follows:

– Union: A ∪B = {x | x ∈ A or x ∈ B}.
– Concatenation: A ◦B = {xy | x ∈ A and y ∈ B}.
– Star: A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}.

• We will use these operations to study the properties of finite automata.

Closedness

• A collection of objects is closed under some operation if applying the operation to members of the
collection returns an object still in the collection.

• We will show that the collection of regular languages is closed under all three regular operations.

Closedness under Union

Theorem 4 (1.25). The class of regular languages is closed under the union operation. In other words, if
A1 and A2 are regular languages, so is A1 ∪A2.

• The proof is by construction. To prove that A1 ∪ A2 is regular, we construct a finite automaton M
that recognizes A1 ∪A2.

• Suppose that a finite automaton M1 recognizes A1 and another M2 recognizes A2.

• Machine M works by simulating both M1 and M2 and accepting if either simulation accepts.

• As the input symbols arrive one by one, M remembers the state that each machine would be in if it
had read up to this point.

7

Closedness under Union (cont.)

Theorem 5 (1.25). The class of regular languages is closed under the union operation. In other words, if
A1 and A2 are regular languages, so is A1 ∪A2.

• Suppose M1 = (Q1,Σ, δ1, q1, F1) recognizes A1 and
M2 = (Q2,Σ, δ2, q2, F2) recognizes A2.

• Construct M = (Q,Σ, δ, q0, F) to recognize A1 ∪A2:

1. Q = {(r1, r2) | r1 ∈ Q1 and r2 ∈ Q2}.
2. Σ is the same. (Generalization is possible.)

3. For each (r1, r2) ∈ Q and each a ∈ Σ, let δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a)).

4. q0 = (q1, q2).

5. F = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2}.

Closedness under Concatenation

Theorem 6 (1.26). The class of regular languages is closed under the concatenation operation. In other
words, if A1 and A2 are regular languages, so is A1 ◦A2.

• Proof by construction along the lines of the proof for closedness under union does not work in this
case.

• Suppose A1 is the set of binary strings containing 001, while A2 is the set of binary strings with an
odd number of 1’s.

– The binary string 0010011 is in A1 ◦A2.

– How can a machine, simulating M1 and then M2, knows that it should not stop M1 and move to
M2 after seeing the first occurrence of 001?

• We resort to a new technique called nondeterminism.

3 Nondeterminism

Nondeterminism

• In a nondeterministic machine, several choices may exist for the next state after reading the next input
symbol in a given state.

• The difference between a deterministic finite automaton (DFA) and a nondeterministic finite automaton
(NFA):

of next states input symbols
(per symbol)

DFA 1 from Σ
NFA 0, 1, or more from Σ ∪ {ε}

Nondeterminism (cont.)

• Nondeterminism is a useful concept that has had great impact on computation theory.

• As we will show, every NFA can be converted into an equivalent DFA.

• However, constructing NFAs is sometimes easier than directly constructing DFAs. An NFA may be
much smaller than its deterministic counterpart, or its functioning may be easier to understand.

8

Nondeterminism (cont.)

Source: [Sipser 2006]

Note: N1 accepts all strings that contain either 101 or 11 as a substring.

How Does an NFA Compute?

1. If there are multiple choices for the next state, given the next input symbol, the machine splits into
multiple copies, all moving to their respective next states in parallel.

2. Additional copies are also created if there are exiting arrows labeled with ε, one copy for each of such
arrows. All copies move to their respective next states in parallel, but without consuming any input.

3. If any copy is in an accept state at the end of the input, the machine accepts the input string.

4. If there are input symbols remaining, the preceding steps are repeated.

Deterministic vs. Nondeterministic Comp.

Source: [Sipser 2006]

A Computation of N1

9

Source: [Sipser 2006]

Example NFA

Source: [Sipser 2006]

Note: A is the set of all strings over {0, 1} containing a 1 in the last third position.

Example NFA (cont.)

Source: [Sipser 2006]

10

Example NFA (cont.)

Source: [Sipser 2006]

Note: N3 accepts all strings of the form 0k where k is a multiple of 2 or 3.

Example NFA (cont.)

Source: [Sipser 2006]

Does N4 accept ε? How about babaa?

Definition of an NFA

• The transition function of an NFA takes a state and an input symbol or the empty string and produces
a set of possible next states.

• Let P(Q) be the power set of Q and let Σε denote Σ ∪ {ε}.

Definition 7 (1.37). A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F), where

1. Q is a finite set of states,

2. Σ is a finite alphabet,

3. δ : Q× Σε −→ P(Q) is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

11

Definition of an NFA (cont.)

Source: [Sipser 2006]

Definition of N1

Formally, N1 = (Q,Σ, δ, q1, F), where

1. Q = {q1, q2, q3, q4},

2. Σ = {0, 1},

3. δ is given as

0 1 ε
q1 {q1} {q1, q2} ∅
q2 {q3} ∅ {q3}
q3 ∅ {q4} ∅
q4 {q4} {q4} ∅

,

4. q1 is the start state, and

5. F = {q4}.

Formal Def. of Nondeterministic Comp.

• Let N = (Q,Σ, δ, q0, F) be an NFA and w be a string over Σ.

• We say that N accepts w if we can write w = y1y2 . . . ym, where yi ∈ Σε, and a sequence of states
r0, r1, . . . , rm exists such that

1. r0 = q0,

2. ri+1 ∈ δ(ri, yi+1), for i = 0, 1, . . . ,m− 1, and

3. rm ∈ F .

Equivalence of NFA and DFA
Two machines are equivalent if they recognize the same language.

Theorem 8 (1.39). Every nondeterministic finite automaton has an equivalent deterministic finite automa-
ton.

Corollary 9 (1.40). A language is regular if and only if some nondeterministic finite automaton recognizes
it.

Equivalence of NFA and DFA (cont.)

Theorem 10 (1.39). Every NFA has an equivalent DFA.

• The idea is to convert a given NFA into an equivalent DFA that simulates the NFA.

• An NFA can be in one of several possible states, as it reads the input.

• If k is the number of states of the NFA, it has 2k subsets of states. Each subset corresponds to one of
the possibilities that the simulating DFA must remember.

12

Equivalence of NFA and DFA (cont.)

Theorem 11 (1.39). Every NFA has an equivalent DFA.

• Let N = (Q,Σ, δ, q0, F) be an NFA recognizing some language A.

• Construct M = (Q′,Σ, δ′, q′0, F
′) to recognize A as follows:

Equivalence of NFA and DFA (cont.)

1. Q′ = P(Q).

2. For R ∈ Q′ and a ∈ Σ, let δ′(R, a) =
⋃

r∈R
δ(r, a).

3. q′0 = {q0}.

4. F ′ = {R ∈ Q′ | R contains some element of F}.

• To allow ε arrows, define for R ⊆ Q,

E(R) = {q | q can be reached from R by ε arrows}.

• Replace δ(r, a) with E(δ(r, a)) and set q′0 to be E({q0}) in the construction of N .

Equivalence of NFA and DFA (cont.)

Source: [Sipser 2006]

Equivalence of NFA and DFA (cont.)

Source: [Sipser 2006]

13

Equivalence of NFA and DFA (cont.)

Source: [Sipser 2006]

Closedness under Union

Theorem 12 (1.45). The class of regular languages is closed under the union operation.

• Let N1 = (Q1,Σ, δ1, q1, F1) recognizing A1 and N2 = (Q2,Σ, δ2, q2, F2) recognizing A2.

• Construct N = (Q,Σ, δ, q0, F) to recognize A1 ∪A2 as follows:

Closedness under Union (cont.)

1. Q = {q0} ∪Q1 ∪Q2.

2. q0 (6∈ Q1 ∪Q2) is the start state.

3. For q ∈ Q and a ∈ Σε, δ(q, a) =

δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2

{q1, q2} q = q0 and a = ε
∅ q = q0 and a 6= ε

4. F = F1 ∪ F2.

Closedness under Union (cont.)

14

Source: [Sipser 2006]

Closedness under Concatenation

Theorem 13 (1.47). The class of regular languages is closed under the concatenation operation.

• Let N1 = (Q1,Σ, δ1, q1, F1) recognizing A1 and N2 = (Q2,Σ, δ2, q2, F2) recognizing A2.

• Construct N = (Q,Σ, δ, q1, F2) to recognize A1 ◦A2 as follows:

1. Q = Q1 ∪Q2.

2. For q ∈ Q and a ∈ Σε,

δ(q, a) =

δ1(q, a) q ∈ Q1 but q 6∈ F1

δ1(q, a) q ∈ F1 and a 6= ε
δ1(q, a) ∪ {q2} q ∈ F1 and a = ε
δ2(q, a) q ∈ Q2 .

Closedness under Concatenation (cont.)

15

Source: [Sipser 2006]

Closedness under Star

Theorem 14 (1.49). The class of regular languages is closed under the star operation.

• Let N1 = (Q1,Σ, δ1, q1, F1) recognizing A.

• Construct N = (Q,Σ, δ, q0, F) to recognize A∗ as follows:

1. Q = {q0} ∪Q1.

2. For q ∈ Q and a ∈ Σε,

δ(q, a) =

δ1(q, a) q ∈ Q1 but q 6∈ F1

δ1(q, a) q ∈ F1 and a 6= ε
δ1(q, a) ∪ {q1} q ∈ F1 and a = ε
{q1} q = q0 and a = ε
∅ q = q0 and a 6= ε

3. F = {q0} ∪ F1.

Closedness under Star (cont.)

Source: [Sipser 2006]

4 Regular Expressions

Regular Expressions

• We can use the regular operations (union, concatenation, star) to build up expressions, called regular
expressions, to describe languages.

• The value of a regular expression is a language.

• For example, the value of (0∪1)0∗ is the language consisting of all strings starting with a 0 or 1 followed
by any number of 0s. (The symbols 0 and 1 are shorthands for the sets {0} and {1}.)

• Regular expressions have an important role in computer science applications involving text.

16

Formal Definition of a Regular Expression

Definition 15 (1.52). We say that R is a regular expression if R is

1. a for some a ∈ Σ,

2. ε,

3. ∅,

4. (R1 ∪R2), where R1 and R2 are regular expressions,

5. (R1 ◦R2), where R1 and R2 are regular expressions, or

6. (R∗1), where R1 is a regular expression.

• A definition of this type is called an inductive definition.

• We write L(R) to denote the language of R.

Example Regular Expressions
Let Σ be {0, 1}.

• 0∗10∗ = {w | w has exactly a single 1}.

• Σ∗1Σ∗ = {w | w has at least one 1}.

• Σ∗001Σ∗ = {w | w contains 001 as a substring}.

• (ΣΣ)∗ = {w | w is a string of even length}.

• 0Σ∗0 ∪ 1Σ∗1 ∪ 0 ∪ 1 = {w | w starts and ends with the same symbol}.

• (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}.

• ∅∗ = {ε}.

R ∪ ∅ = R, R ◦ ε = R, R ◦ ∅ = ∅, but R ∪ ε may not equal R.

Regular Expressions vs. Finite Automata

Theorem 16 (1.54). A language is regular if and only if some regular expression describes it.

• This theorem has two directions:

• If a language is described by a regular expression, then it is regular.

• If a language is regular, then it is described by a regular expression.

• We prove them separately.

17

Regular Expressions vs. Finite Automata (cont.)

Lemma 17 (1.55). If a language is described by a regular expression, then it is regular.

1. R = a for some a ∈ Σ.

N = ({q1, q2},Σ, δ, q1, {q2}), where δ(q1, a) = {q2}, δ(r, b) = ∅ for r 6= q1 or b 6= a.

2. R = ε.

N = ({q},Σ, δ, q, {q}), where δ(r, b) = ∅ for any r and b.

3. R = ∅.
N = ({q},Σ, δ, q, ∅), where δ(r, b) = ∅ for any r and b.

4. R = R1 ∪R2. Closed under union.

5. R = R1 ◦R2. Closed under concatenation.

6. R = R∗1. Closed under star.

Regular Expressions vs. Finite Automata (cont.)

Source: [Sipser 2006]

Regular Expressions vs. Finite Automata (cont.)

18

Source: [Sipser 2006]

Regular Expressions vs. Finite Automata (cont.)

Lemma 18 (1.60). If a language is regular, then it is described by a regular expression.

• Every regular language is recognized by some DFA.

• We describe a procedure for converting DFAs into equivalent regular expressions.

• For this purpose, we introduce a new type of finite automaton called a generalized nondeterministic
finite automaton (GNFA).

• We show how to convert DFAs into GNFAs and then GNFAs into regular expressions.

Regular Expressions vs. Finite Automata (cont.)

Source: [Sipser 2006]

19

Regular Expressions vs. Finite Automata (cont.)

Source: [Sipser 2006]

Regular Expressions vs. Finite Automata (cont.)

Source: [Sipser 2006]

Definition of a GNFA

Definition 19 (1.52). A generalized nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, qstart, qaccept),
where

1. Q is the finite set of states,

2. Σ is the input alphabet,

3. δ : (Q − {qaccept}) × (Q − {qstart}) −→ R is the transition function (where R is the collection of all
regular expressions over Σ),

4. qstart is the start state, and

5. qaccept is the accept state.

20

Computation of a GNFA (cont.)
A GNFA accepts a string w in Σ∗ if w = w1w2 . . .

wk, where each wi is in Σ∗, and a sequence of states q0, q1, . . . , qk exists such that

1. q0 = qstart,

2. qk = qaccept, and

3. for each i, we have wi ∈ L(Ri), where Ri = δ(qi−1, qi).

Converting a GNFA

1. Let k be the number of states of the input G.

2. If k = 2, return the label R of the only transition.

3. If k > 2, select qrip ∈ Q different from qstart and qaccept.

Let G′ be (Q′,Σ, δ′, qstart, qaccept), where

Q′ = Q− {qrip}

and for any qi ∈ Q′ − {qaccept} and any qj ∈ Q′ − {qstart},

δ′(qi, qj) = (R1)(R2)∗(R3) ∪ (R4),

where R1 = δ(qi, qrip), R2 = δ(qrip, qrip), R3 = δ(qrip, qj), and R4 = δ(qi, qj).

4. Repeat with G′.

Converting a GNFA (cont.)

Source: [Sipser 2006]

21

Converting a GNFA (cont.)

Source: [Sipser 2006]

5 Nonregular Languages: The Pumping Lemma

Nonregular Languages

• To understand the power of finite automata we must also understand their limitations.

• Consider the language B = {0n1n | n ≥ 0}.

• To recognize B, a machine will have to remember how many 0s have been read so far. This cannot be
done with any finite number of states, since the number of 0s is not limited.

• C = {w | w has an equal number of 0s and 1s} is not regular, either.

But, D = {w | w has equal occurrences of 01
and 10 as substrings} is regular.

• To prove that a language is not regular, we will need a technique based on the pumping lemma.

The Pumping Lemma

Theorem 20 (1.70). If A is a regular language, then there is a number p (the pumping length) such that,
if s is any string in A and |s| ≥ p, then s may be divided as s = xyz satisfying:

1. for each i ≥ 0, xyiz ∈ A (string s can be “pumped”),

2. |y| > 0, and

3. |xy| ≤ p.

• Let M = (Q,Σ, δ, q1, F) be a DFA that recognizes A.

• We assign the pumping length p to be the number of states of M .

• We show that any string s in A of length at least p may be broken into xyz satisfying the three
conditions.

22

The Pumping Lemma (cont.)

Source: [Sipser 2006]

The Pumping Lemma (cont.)

Source: [Sipser 2006]

Proving Nonregularity
Below are the steps in applying the pumping lemma to prove that a language B is not regular:

• Assume toward contradiction that B is regular.

• Then, from the pumping lemma, any string in B that is long enough (at least of the pumping length
p) can be pumped.

• Find a particular long string s.

• Consider every possible division of s as xyz.

• The divisions may be grouped into a few patterns/cases; we may always require |xy| ≤ p, according to
the pumping lemma.

• Show that, in each of the division patterns, xyiz 6∈ B for some i ≥ 0, a contradiction.

Example Nonregular Languages
B = {0n1n | n ≥ 0} is not regular.

• Let s be 0p1p, where p is the pumping length (for B).

• Three cases of dividing s as xyz (where |y| > 0):

23

1.

p︷ ︸︸ ︷
0 · · · 0 · · · 0︸ ︷︷ ︸

y

· · · 0
p︷ ︸︸ ︷

1 · · · 1: xy2z will have more 0s than 1s and so is not in B.

2. Similarly, for 0 · · · 01 · · · 1 · · · 1︸ ︷︷ ︸
y

· · · 1.

3. 0 · · · 0 0 · · · 01 · · · 1︸ ︷︷ ︸
y

1 · · · 1: xy2z will have some 0s after 1s and so is not in B.

Example Nonregular Languages (cont.)
C = {w | w has an equal number of 0s and 1s} is not regular.

• Let s be 0p1p, like in the proof for B.

• But, how do we deal with 0 · · · 0 0 · · · 01 · · · 1︸ ︷︷ ︸
y

1 · · · 1?

• We may assume |xy| ≤ p:
p︷ ︸︸ ︷

0 · · · · · · 0︸ ︷︷ ︸
xy

0 · · · 0
p︷ ︸︸ ︷

1 · · · 1: xy2z will have more 0s than 1s and so is not in B.

• Alternative proof:

If C were regular, then C ∩ 0∗1∗ would also be regular. But, we already know that B(= C ∩ 0∗1∗) is
not regular, a contradiction.

Example Nonregular Languages (cont.)
F = {ww | w ∈ {0, 1}∗} is not regular.

• Let s be 0p10p1.

• Again, we assume |xy| ≤ p:
p︷ ︸︸ ︷

0 · · · · · · 0︸ ︷︷ ︸
xy

0 · · · 0 1

p︷ ︸︸ ︷
0 · · · 0 1: xy2z will have more than p 0s before the first 1 and so is not in F .

Example Nonregular Languages (cont.)

D = {1n2 | n ≥ 0} is not regular.

• Let s be 1p
2

.

•
p2︷ ︸︸ ︷

1 · · · · · · 1︸ ︷︷ ︸
xy

1 · · · 1: xy2z will have (p2 + |y|) 1s.

• Again, we assume |xy| ≤ p. Together with |y| > 0, we have 0 < |y| ≤ p.

• It follows that p2 < p2 + |y| < p2 + 2p+ 1 = (p+ 1)2 and so xy2z is not in D.

24

Example Nonregular Languages (cont.)
E = {0i1j | i > j} is not regular.

• Let s be 0p+11p.

• We assume |y| > 0 and |xy| ≤ p:
p+1︷ ︸︸ ︷

0 · · · · · · 0︸ ︷︷ ︸
xy

0 · · · 0
p︷ ︸︸ ︷

1 · · · 1.

• The strings xy2z, xy3z, etc. all have more 0s than 1s and are actually in E!

• But, by “pumping down,” we get xy0z = xz which cannot have more 0s than 1s and so is not in E.

25

