Homework Assignment \#10

Due Time/Date

This assignment is due 2:10PM Tuesday, June 9, 2020. Late submission will be penalized by 20% for each working day overdue.

How to Submit

Please use a word processor or scan hand-written answers to produce a single PDF file. Name your file according to this pattern: "b057050xx-hw10". Upload the PDF file to the Ceiba course site for Theory of Computing 2020: https://ceiba.ntu.edu.tw/1082theory2020. You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

(Note: problems marked with "Exercise X.XX" or "Problem X.XX" are taken from [Sipser 2013] with probable adaptation.)

1. (Problem 5.9; 10 points) Let $A M B I G_{\mathrm{CFG}}=\{\langle G\rangle \mid G$ is an ambiguous CFG $\}$. Show that $A M B I G_{\mathrm{CFG}}$ is undecidable. (Hint: use a reduction from PCP. Given an instance

$$
P=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \cdots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

of PCP, construct a CFG G with the rules:

$$
\begin{aligned}
& S \rightarrow T \mid B \\
& T \rightarrow t_{1} T a_{1}|\cdots| t_{k} T a_{k}\left|t_{1} a_{1}\right| \cdots \mid t_{k} a_{k} \\
& B \rightarrow t_{1} B a_{1}|\cdots| t_{k} B a_{k}\left|t_{1} a_{1}\right| \cdots \mid t_{k} a_{k},
\end{aligned}
$$

where a_{1}, \ldots, a_{k} are new terminal symbols. Prove that this reduction works.)
2. (Problem 5.14(b); 20 points) Define a two-headed finite automaton (2DFA) to be a deterministic finite automaton that has two read-only, bidirectional heads that start at the left-hand end of the input tape and can be independently controlled to move in either direction. The tape of a 2 DFA is finite and is just large enough to contain the input plus two additional blank tape cells, one on the left-end and one on the right-hand end, that serve as delimiters. A 2DFA accepts its input by entering a special accept state. For example, a 2DFA can recognize the language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.

Let $E_{2 \mathrm{DFA}}=\{\langle M\rangle \mid M$ is a 2DFA and $L(M)=\emptyset\}$. Show that $E_{2 \mathrm{DFA}}$ is undecidable.
3. (Problem 5.18(b); 10 points) Use Rice's theorem to prove the undecidability of the language $\{\langle M\rangle \mid M$ is a TM and $101 \in L(M)\}$. (Note: you should show that Rice's theorem is applicable for the problem/language.)
4. (Problem 5.22; 20 points) Let $X=\{\langle M, w\rangle \mid M$ is a single-tape TM that never modifies the portion of the tape that contains the input $w\}$. Is X decidable? Prove your answer.
5. (Problem 5.29; 20 points) A useless state in a Turing machine is one that is never entered on any input string. Consider the problem of determining whether a Turing machine has any useless states. Formulate this problem as a language and show that it is undecidable.
6. (Problem 5.36; 20 points) Prove that there exists an undecidable subset of $\{1\}^{*}$.

