Time Complexity and NP-Completeness (Based on [Sipser 2006, 2013])

Yih-Kuen Tsay
Department of Information Management
National Taiwan University

Time Complexity

- Decidability of a problem merely indicates that the problem is computationally solvable in principle.
- It may not be solvable in practice if the solution requires an inordinate amount of time or memory.
- We shall introduce a way of measuring the time used to solve a problem.
We then show how to classify problems according to the amount of time required.

Measuring Time Complexity

Let $A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.
How much time does a single-tape TM need to decide A ?

- A single-tape TM M_{1} for A works as follows:

1. Scan across the tape and reject if a 0 appears to the right of a 1 .
2. Repeat Stage 3 if both 0 s and 1 s remain on the tape.
3. Scan across the tape, crossing off a single 0 and a single 1 .
4. If no 0 s or 1 s remain on the tape, accept; otherwise, reject.

Measuring Time Complexity

Let $A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.
How much time does a single-tape TM need to decide A ?

- A single-tape TM M_{1} for A works as follows:

1. Scan across the tape and reject if a 0 appears to the right of a 1 .
2. Repeat Stage 3 if both 0 s and 1 s remain on the tape.
3. Scan across the tape, crossing off a single 0 and a single 1 .
4. If no 0 s or 1 s remain on the tape, accept; otherwise, reject.

Intuitively, the running time of the Turing machine will be longer when the input is longer.

Measuring Time Complexity (cont.)

We shall compute the running time of an algorithm purely as a function of the length of the string representing the input.

Definition (7.1)

Let M be a deterministic TM that halts on all inputs. The running time or time complexity of M is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where $f(n)$ is the maximum number of steps that M uses on any input of length n. If $f(n)$ is the running time of M, we say that M runs in time $f(n)$ or that M is an $f(n)$ time Turing machine.

Measuring Time Complexity (cont.)

We shall compute the running time of an algorithm purely as a function of the length of the string representing the input.

Definition (7.1)

Let M be a deterministic TM that halts on all inputs. The running time or time complexity of M is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where $f(n)$ is the maximum number of steps that M uses on any input of length n. If $f(n)$ is the running time of M, we say that M runs in time $f(n)$ or that M is an $f(n)$ time Turing machine.

We will mostly focus on worst-case analysis, measuring the longest running time of all inputs of a particular length.

Asymptotic Analysis

The exact running time of an algorithm is a complex expression.
We seek to understand the running time of the algorithm when it is run on large inputs.

- We do so by considering only the highest-order term of the expression of its running time (discarding the coefficient of that term and any lower-order terms).
For example, if $f(n)=6 n^{3}+2 n^{2}+20 n+45$, we say that f is asymptotically at most n^{3}.
The asymptotic notation, or big-O notation, for describing this relationship is $f(n)=O\left(n^{3}\right)$.

Asymptotic Bounds

Let \mathcal{R}^{+}be the set of positive real numbers.

Definition (7.2)

Let f and g be two functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^{+}$.
We say that $f(n)=O(g(n))$ if positive integers c and n_{0} exist so that, for every integer $n \geq n_{0}$,

$$
f(n) \leq \operatorname{cg}(n) .
$$

When $f(n)=O(g(n))$, we say that $g(n)$ is an (asymptotic) upper bound for $f(n)$.

Asymptotic Bounds (cont.)

Intuitively, $f(n)=O(g(n))$ means that f is less than or equal to g if we disregard differences up to a constant factor.

- Big- O notation gives a way to say that one function is asymptotically no more than another.
Big- O notation can appear in arithmetic expressions such as $O\left(n^{2}\right)+O(n)\left(=O\left(n^{2}\right)\right)$ and $2^{O(n)}$.
Bounds of the form n^{c}, for $c>0$, are called polynomial bounds.
Bounds of the form $2^{n^{c}}$, for $c>0$, are called exponential bounds.

Asymptotic Bounds (cont.)

- To say that one function is asymptotically less than another, we use small-o notation.

Definition (7.5)

Let f and g be two functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^{+}$.
We say that $f(n)=o(g(n))$ if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

For example, $\sqrt{n}=o(n)$ and $n \log n=o\left(n^{2}\right)$.

Analyzing Algorithms

Consider the single-tape TM M_{1} for deciding $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.

- Stage 1 takes $2 n(=O(n))$ steps: n steps to scan the input and another n steps to reposition the head at the left-hand end of the tape.
Each execution of Stage 3 takes $2 n$ steps and at most $n / 2$ such executions are required. So, Stages 2 and 3 take at most $(n / 2) 2 n\left(=O\left(n^{2}\right)\right)$ steps.
- Stage 4 takes $n(=O(n))$ steps.

Complexity Classes

Definition (7.7)

Let $t: \mathcal{N} \longrightarrow \mathcal{N}$ be a function.
Define the time complexity class $\operatorname{TIME}(t(n))$ to be $\{L \mid L$ is a language decided by an $O(t(n))$ time Turing machine $\}$.
$A\left(=\left\{0^{k} 1^{k} \mid k \geq 0\right\}\right) \in \operatorname{TIME}\left(n^{2}\right)$, since M_{1} decides A in time $O\left(n^{2}\right)$.
Is there a machine that decides A asymptotically faster?
In other words, is A in $\operatorname{TIME}(t(n))$ for $t(n)=o\left(n^{2}\right)$?

Complexity Classes (cont.)

Below is a faster single-tape TM for deciding A ($=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$).

- $M_{2}=$ "On input string w :

1. Same as Stage 1 of M_{1}.
2. Repeat Stages 3 and 4 if both 0 s and 1 s remain on the tape.
3. If the total number of 0 s and 1 s remaining is odd, reject.
4. Cross off every other 0 and then every other 1 .
5. If no 0 s or 1 s remain on the tape, accept; otherwise, reject."

The running time of M_{2} is $O(n \log n)$ and hence $A \in \mathrm{TIME}(n \log n)$.

Complexity Classes (cont.)

Below is an even faster TM, which has two tapes, for deciding A ($=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$).

- $M_{3}=$ "On input string w :

1. Same as Stage 1 of M_{1}.
2. Copy the 0 s on Tape 1 onto Tape 2.
3. Scan across the 1 s on Tape 1 until the end of the input, crossing off a 0 on Tape 2 for each 1 . If there are not enough 0 s , reject.
4. If all the 0 s have now been crossed off, accept; otherwise, reject."
The running time of M_{3} is $O(n)$.
This indicates that the complexity of A depends on the model of computation selected.

Complexity Relationships among Models

Theorem (7.8)

Let $t(n)$ be a function, where $t(n) \geq n$. Then every $t(n)$ time multitape Turing machine has an equivalent $O\left(t^{2}(n)\right)$ time single-tape Turing machine.

Let M be a k-tape TM running in $t(n)$ time.

- A single-tape TM S simulating M requires $O(t(n))$ tape cells to store the current contents of M 's tapes and the respective head positions.
It takes $O(t(n))$ time for S to simulate each of M 's $t(n)$ steps.
- So, the running time of S is $t(n) \times O(t(n))=O\left(t^{2}(n)\right)$.

Complexity Relationships among Models (cont.) (14.)

Definition (7.9)

The running time of a nondeterministic TM N is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where $f(n)$ is the maximum number of steps that N uses on any branch of its computation on any input of length n.

Theorem (7.11)

Let $t(n)$ be a function, where $t(n) \geq n$. Then every $t(n)$ time nondeterministic single-tape Turing machine has an equivalent $2^{O(t(n))}$ time deterministic single-tape Turing machine.

Complexity Relationships among Models (cont.)

Deterministic
Nondeterministic

Figure 7.10

Measuring deterministic and nondeterministic time

Source: [Sipser 2006]

Complexity Relationships among Models (cont.) (8iN)

Every branch of N's computation tree has a length of at most $t(n)$.
The total number of nodes in the tree is $O\left(b^{t(n)}\right)$, where b is the maximum number of legal choices given by N 's transition function.

The running time of a simulating deterministic 3-tape TM is $O(t(n)) \times O\left(b^{t(n)}\right)=2^{O(t(n))}$.
The running time of a simulating deterministic single-tape TM is $\left(2^{O(t(n))}\right)^{2}=2^{O(2 t(n))}=2^{O(t(n))}$.

Polynomial Time

For our purposes, polynomial differences in running time are considered to be small, whereas exponential differences are considered to be large.

- Exponential time algorithms typically arise when we solve problems by searching through a space of solutions, called brute-force search.
- All "reasonable" deterministic computational models are polynomially equivalent, i.e., any one of them can simulate another with a polynomial increase in running time.
- We shall focus on aspects of time complexity theory that are unaffected by polynomial differences in running time.

The Class \mathbf{P}

Definition (7.12)

\mathbf{P} is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$
\mathrm{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

P is invariant for all models of computing that are polynomially equivalent to the deterministic single-tape Turing machine.

- P roughly corresponds to the class of problems that are "realistically solvable" on a computer.

Analyzing Algorithms for P Problems

Suppose that we have given a high-level description of a polynomial-time algorithm with stages. To analyze the algorithm,

1. we first give a polynomial upper bound on the number of stages that the algorithm uses, and
2. we then show that the individual stages can be implemented in polynomial time on a reasonable deterministic model.
A "reasonable" encoding method for problems should be used, which allows for polynomial-time encoding and decoding of objects into natural internal representation or into other reasonable encodings.

Problems in P

PATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph that has a directed path from s to $t\}$.

Theorem (7.14)

$P A T H \in P$.

- $M=$ "On input $\langle G, s, t\rangle$:

1. Place a mark on node s.
2. Repeat Stage 3 until no additional nodes are marked.
3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
4. If t is marked, accept; otherwise, reject."

Problems in P (cont.)

figure 7.13

The PATH problem: Is there a path from s to t ?

Source: [Sipser 2006]

Problems in P (cont.)

- RELPRIME $=\{\langle x, y\rangle \mid x$ and y are relatively prime $\}$.

Theorem (7.15)

RELPRIME $\in P$.

The input size of a number x is $\log x$ (not x itself).
$E=$ "On input $\langle x, y\rangle$:

1. Repeat Stages 2 and 3 until $y=0$.
2. Assign $x \leftarrow x \bmod y$.
3. Exchange x and y.
4. Output x."

- $R=$ "On input $\langle x, y\rangle$:

1. Run E on $\langle x, y\rangle$.
2. If E 's output is 1 , accept; otherwise, reject."

Problems in P (cont.)

Theorem (7.16)

Every context-free language belongs to P.
We assume that a CFG in Chomsky normal form is given for the context-free language.
$D=$ "On input $w=w_{1} w_{2} \cdots w_{n}$,

1. If $w=\varepsilon$ and $S \rightarrow \varepsilon$ is a rule, accept.
2. For $i=1$ to n,
3. For each variable A,
4. Is $A \rightarrow b$, where $b=w_{i}$, a rule?
5. If yes, add A to table (i, i).
6. For $I=2$ to n,
7. For $i=1$ to $n-I+1$,
8. Let $j=i+I-1$,
9. For $k=i$ to $j-1$,
10. For each rule $A \rightarrow B C$,
11. If $B \in \operatorname{table}(i, k)$ and $C \in \operatorname{table}(k+1, j)$,
then put A in table($i, j)$.
12. If $S \in \operatorname{table}(1, n)$, accept; otherwise, reject."

The Hamiltonian Path Problem

-

A Hamiltonian path in a directed graph is a directed path that goes through each node exactly once.

- HAMPATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph with a Hamiltonian path from s to $t\}$.
We can easily obtain an exponential time algorithm for HAMPATH.
- No one knows whether HAMPATH is solvable in polynomial time.

The Hamiltonian Path Problem

A Hamiltonian path in a directed graph is a directed path that goes through each node exactly once.
HAMPATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph with a Hamiltonian path from s to $t\}$.

- We can easily obtain an exponential time algorithm for HAMPATH.
No one knows whether HAMPATH is solvable in polynomial time.
However, verifying the existence of a Hamiltonian path may be much easier than determining its existence.

The Hamiltonian Path Problem (cont.)

Figure 7.17
A Hamiltonian path goes through every node exactly once

Source: [Sipser 2006]

The Class NP

Definition (7.18)

A verifier for a language A is an algorithm V, where

$$
A=\{w \mid V \text { accepts }\langle w, c\rangle \text { for some string } c\} .
$$

The information represented by the symbol c is called a certificate, or proof, of membership in A.
A polynomial-time verifier runs in polynomial time in the length of w.

Definition (7.19)

NP is the class of polynomially verifiable languages, i.e., languages that have polynomial-time verifiers.

The Class NP (cont.)

Theorem (7.20)

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

Let V be a verifier for $A \in N P$ that runs in time n^{k}. Construct a decider N for A as follows.

- $N=$ "On input w of length n :

1. Nondeterministically select string c of length n^{k}.
2. Run V on input $\langle w, c\rangle$.
3. If V accepts, accept; otherwise, reject."

The Class NP (cont.)

Let N be a nondeterministic decider for a language A that runs in time n^{k}. Construct a verifier V for A as follows.

- $V=$ "On input $\langle w, c\rangle$:

1. Simulate N on input w, treating each symbol of c as a description of the nondeterministic choice to make at each step.
2. If this branch of N 's computation accepts, accept; otherwise, reject."

The Class NP (cont.)

Definition (7.21)

$\operatorname{NTIME}(t(n))=\{L \mid L$ is a language decided by an $O(t(n))$ time nondeterministic Turing machine $\}$.

Corollary (7.22)
$\mathrm{NP}=\bigcup_{k} \operatorname{NTIME}\left(n^{k}\right)$.

Analyzing Algorithms for NP Problems

The class NP is insensitive to the choice of reasonable nondeterministic computational model.

- Like in the deterministic case, we use a high-level description to present a nondeterministic polynomial-time algorithm.

1. Each stage of a nondeterministic polynomial-time algorithm must have an obvious implementation in polynomial on a reasonable nondeterministic model.
2. Every branch of its computation tree uses at most polynomially many stages.

Problems in NP

A clique in an undirected graph is a subgraph, wherein every two nodes are connected by an edge.
A k-clique is a clique that contains k nodes.
CLIQUE $=\{\langle G, k\rangle \mid G$ is an undirected graph with a k-clique $\}$.

Theorem (7.24)

CLIQUE is in NP.

Problems in NP (cont.)

FIGURE $\mathbf{7 . 2 3}$

A graph with a 5-clique

Source: [Sipser 2006]

Problems in NP (cont.)

- $V=$ "On input $\langle\langle G, k\rangle, c\rangle$:

1. Test whether c is a set of k nodes in G.
2. Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject."

Problems in NP (cont.)

$V=$ "On input $\langle\langle G, k\rangle, c\rangle$:

1. Test whether c is a set of k nodes in G.
2. Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject."

- Alternatively,
$N=$ "On input $\langle G, k\rangle$:

1. Nondeterministically select a subset c of k nodes in G.
2. Test whether G contains all edges connecting nodes in c.
3. If yes, accept; otherwise, reject."

Problems in NP (cont.)

SUBSET_SUM $=\left\{\langle S, t\rangle \mid S=\left\{x_{1}, \cdots, x_{k}\right\}\right.$ and for some $\left\{y_{1}, \cdots, y_{l}\right\} \subseteq S$, we have $\left.\sum y_{i}=t\right\}$.

Theorem (7.25)

SUBSET_SUM is in NP.

- $V=$ "On input $\langle\langle S, t\rangle, c\rangle$:

1. Test whether c is a collection of numbers that sum to t.
2. Test whether S contains the numbers in c.
3. If both pass, accept; otherwise, reject."

Problems in NP (cont.)

- SUBSET_SUM $=\left\{\langle S, t\rangle \mid S=\left\{x_{1}, \cdots, x_{k}\right\}\right.$ and for some $\left\{y_{1}, \cdots, y_{l}\right\} \subseteq S$, we have $\left.\sum y_{i}=t\right\}$.

Theorem (7.25)

SUBSET_SUM is in NP.
$V=$ "On input $\langle\langle S, t\rangle, c\rangle$:

1. Test whether c is a collection of numbers that sum to t.
2. Test whether S contains the numbers in c.
3. If both pass, accept; otherwise, reject."

Alternatively, $N=$ "On input $\langle S, t\rangle$:

1. Nondeterministically select a subset c of the numbers in S.
2. Test whether c is a collection of numbers that sum to t.
3. If yes, accept; otherwise, reject."

The Class co-NP

- The complements of CLIQUE and SUBSET_SUM, namely CLIQUE and SUBSET_SUM, are not obviously members of NP.
- Verifying that something is not present seems to be more difficult than verifying that it is present.
The complexity class co-NP contains the languages that are complements of languages in NP.

The Class co-NP

The complements of CLIQUE and SUBSET_SUM, namely CLIQUE and SUBSET_SUM, are not obviously members of NP.
Verifying that something is not present seems to be more difficult than verifying that it is present.
The complexity class co-NP contains the languages that are complements of languages in NP.

- We do not know whether co-NP is different from NP.

P vs. NP

FIGURE $\mathbf{7 . 2 6}$

One of these two possibilities is correct

Source: [Sipser 2006]

NP-Completeness

The complexity of certain problems in NP is related to that of the entire class [Cook and Levin].
If a polynomial-time algorithm exists for any of the problems, all problems in NP would be polynomial-time solvable.
These problems are called NP-complete.

NP-Completeness

The complexity of certain problems in NP is related to that of the entire class [Cook and Levin].

- If a polynomial-time algorithm exists for any of the problems, all problems in NP would be polynomial-time solvable.
These problems are called NP-complete.
SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable Boolean formula $\}$.
Theorem (7.27; Cook-Levin)
$S A T \in P$ iff $P=N P$.
(Equivalently, SAT $\notin P$ iff $P \neq N P$.)

Polynomial-Time Reducibility

When problem A is efficiently reducible to problem B, an efficient solution to B can be used to solve A efficiently.

Definition (7.28)

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a polynomial-time computable function if some polynomial-time Turing machine M, on every input w, halts with just $f(w)$ on its tape.

Definition (7.29)

Language A is polynomial-time mapping reducible (polynomial-time reducible) to language B, written $A \leq_{P} B$, if there is a polynomial-time computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$, where for every w,

$$
w \in A \Longleftrightarrow f(w) \in B .
$$

Polynomial-Time Reducibility (cont.)

FIGURE 7.30

Polynomial time function f reducing A to B

Source: [Sipser 2006]
Function f transforms the membership problem of A to that of B.

Polynomial-Time Reducibility (cont.)

$A \leq_{\mathrm{P}} B$, like $A \leq_{\mathrm{M}} B$, means that a Turing machine M_{A} for A can be constructed from a given Turing machine M_{B} for B.

Furthermore, if M_{B} is a polynomial-time decider for B, then M_{A} is a polynomial-time decider for A.

Polynomial-Time Reducibility (cont.)

Theorem (7.31)
If $A \leq_{P} B$ and $B \in P$, then $A \in P$.
Let M_{B} be a polynomial-time algorithm deciding B and f be the polynomial-time reduction from A to B.$M_{A}=$ "On input w :

1. Compute $f(w)$.
2. Run M_{B} on input $f(w)$ and output whatever M_{B} outputs."

Example Polynomial-Time Reducibility

A Boolean formula is in conjunctive normal form, called a CNF-formula, if it comprises several clauses connected with $\wedge \mathrm{s}$, as in

$$
\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{3} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(x_{3} \vee \overline{x_{6}}\right)
$$

- It is a 3CNF-formula if all the clauses have three literals, as in

$$
\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{3} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(x_{3} \vee \overline{x_{6}} \vee x_{4}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right)
$$

- 3SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable 3CNF-formula $\}$.

Theorem (7.32)
3SAT is polynomial-time reducible to CLIQUE.

Example Polynomial-Time Reducibility (cont.)

FIGURE 7.33

The graph that the reduction produces from
$\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

Source: [Sipser 2006]

NP-Completeness

Definition (7.34)

A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and
2. every A in NP is polynomial-time reducible to B (in which case, we say that B is NP-hard).

Theorem (7.35)
If B is $N P$-complete and $B \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

NP-Completeness (cont.)

The polynomial-time reducibility relation \leq_{P} is a transitive relation. (Mathematically, \leq_{P} is a pre-order, i.e., it is reflexive and transitive.)

NP-Completeness (cont.)

- The polynomial-time reducibility relation \leq_{P} is a transitive relation. (Mathematically, \leq_{P} is a pre-order, i.e., it is reflexive and transitive.)
Transitivity of \leq_{P} allows one to prove NP-completeness of a problem via a known NP-complete problem.
If B is NP-complete and $B \leq_{\mathrm{P}} C$, then every problem in P is polynomial-time reducible to C.

Theorem (7.36)

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for some $C \in \mathrm{NP}$, then C is $N P$-complete.

The Cook-Levin Theorem

Theorem (7.37)
SAT is NP-complete.
SAT is in NP, as a nondeterministic polynomial-time TM can guess an assignment to a given formula ϕ and accept if the assignment satisfies ϕ.
We next construct a polynomial-time reduction for each language A in NP to $S A T$.
The reduction takes a string w and produces a Boolean formula ϕ that simulates the NP machine N for A on input w.
Assume that N runs in time n^{k} (with some constant difference) for some $k>0$.

The Cook-Levin Theorem (cont.)

Figure 7.38

A tableau is an $n^{k} \times n^{k}$ table of configurations

The Cook-Levin Theorem (cont.)

- If N accepts, ϕ has a satisfying assignment that corresponds to the accepting computation.
-

If N rejects, no assignment satisfies ϕ.
Let $C=Q \cup \Gamma \cup\{\#\}$. For $1 \leq i, j \leq n^{k}$ and $s \in C$, we have a variable $x_{i, j, s}$.
Variable $x_{i, j, s}$ is assigned 1 iff cell[i,j] contains an s.
Construct ϕ as $\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {accept }} \wedge \phi_{\text {move }}$, where \ldots

- Size of $\phi_{\text {cell }}: O\left(n^{2 k}\right)$.
- Size of $\phi_{\text {start }}: O\left(n^{k}\right)$.
- Size of $\phi_{\text {accept }}: O\left(n^{2 k}\right)$.
- Size of $\phi_{\text {move }}: O\left(n^{2 k}\right)$.

The Cook-Levin Theorem (cont.)

$$
\begin{aligned}
\phi_{\text {cell }}= & \bigwedge_{1 \leq i, j \leq n^{k}}\left[\left(\bigvee_{s \in C} x_{i, j, s}\right) \wedge\left(\bigwedge_{s, t \in C, s \neq t}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right)\right] . \\
\phi_{\text {start }}= & \begin{array}{l}
x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \\
x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \cdots \wedge x_{1, n+2, w_{n}} \wedge \\
x_{1, n+3, \sqcup \sqcup} \wedge \cdots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#} . \\
\phi_{\text {accept }}=
\end{array} \bigvee_{1 \leq i, j \leq n^{k}} x_{i, j, q_{\text {accept }}} . \\
\phi_{\text {move }}= & \bigwedge_{1 \leq i \leq\left(n^{k}-1\right), 2 \leq j \leq\left(n^{k}-1\right)} \text { (window }(i, j) \text { is legal). }
\end{aligned}
$$

The Cook-Levin Theorem (cont.)

Assume that $\delta\left(q_{1}, a\right)=\left\{\left(q_{1}, b, R\right)\right\}$ and $\delta\left(q_{1}, b\right)=\left\{\left(q_{2}, c, L\right),\left(q_{2}, a, R\right)\right\}$.
(a)

a	q_{1}	b
q_{2}	a	c

(b)

a	q_{1}	b
a	a	q_{2}

(c)

a	a	q_{1}
a	a	b

(d)

$\#$	b	a
$\#$	b	a

(e)

a	b	a
a	b	q_{2}

(f)

b	b	b
c	b	b

FIGURE 7.39

Examples of legal windows

Source: [Sipser 2006]

The Cook-Levin Theorem (cont.)

Assume that $\delta\left(q_{1}, a\right)=\left\{\left(q_{1}, b, R\right)\right\}$ and $\delta\left(q_{1}, b\right)=\left\{\left(q_{2}, c, L\right),\left(q_{2}, a, R\right)\right\}$.

(a) | a | b | a |
| :--- | :--- | :--- |
| a | a | a |

(b)

a	q_{1}	b
q_{1}	a	a

(c)

b	q_{1}	b
q_{2}	b	q_{2}

FIGURE $\mathbf{7 . 4 0}$
Examples of illegal windows

Source: [Sipser 2006]

The Cook-Levin Theorem (cont.)

The condition "window (i, j) is legal" can be expressed as

$$
\bigvee_{a_{1}, \cdots, a_{6} \text { legal }} \begin{aligned}
& \left(x_{i, j-1, a_{1}} \wedge x_{i, j, a_{2}} \wedge x_{i, j+1, a_{3}} \wedge\right. \\
& \left.x_{i+1, j-1, a_{4}} \wedge x_{i+1, j, a_{5}} \wedge x_{i+1, j+1, a_{6}}\right)
\end{aligned}
$$

Another Two NP-Complete Problems

Theorem

3SAT is NP-complete.

- The proof of the Cook-Levin theorem can be modified so that the Boolean formula involved is in conjunctive normal form.
A CNF-formula can be converted in polynomial time to a 3CNF-formula (with a length polynomially bounded in the length of the CNF-formula).
- If a clause contains / literals $\left(a_{1} \vee a_{2} \vee \cdots \vee a_{l}\right)$, we can replace it with the $I-2$ clauses

$$
\begin{aligned}
& \left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee a_{3} \vee z_{2}\right) \wedge\left(\overline{z_{2}} \vee a_{4} \vee z_{3}\right) \wedge \\
& \cdots \wedge\left(\overline{z_{l-4}} \vee a_{l-2} \vee z_{l-3}\right) \wedge\left(\overline{z_{l-3}} \vee a_{l-1} \vee a_{l}\right)
\end{aligned}
$$

Another Two NP-Complete Problems (cont.)

Theorem
CLIQUE is NP-complete.
CLIQUE is in NP and $3 S A T \leq_{\mathrm{P}}$ CLIQUE.

