
Theory of Computing 2022: Introduction and Preliminaries

(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

February 15, 2022

1 Overview

What It Is

• The central question:

What are the fundamental capabilities and limitations of computers?

• Three main areas:

– Automata Theory

– Computability Theory

– Complexity Theory

Complexity Theory

• Some problems are easy and some hard.

For example, sorting is easy and scheduling is hard.

/* A problem is considered (computationally) hard when an efficient (polynomial-time) solution/algorithm
to the problem either does not, or is not known to, exist.*/

• The central question of complexity theory:

What makes some problems computationally hard and others easy?

• We don’t have the answer to it.

• However, researchers have found a scheme for classifying problems according to their computational
difficulty.

• One practical application: cryptography/security.

/* When breaking an encryption/encipherment involves solving computationally harder problems, one
has more confidence in the security of the encryption. */

1

Dealing with Computationally Hard Problems
Options for dealing with a computationally hard problem:

• Try to simplify it (the hard part of the problem might be unnecessary).

• Settle for an approximate solution.

• Find a solution that usually runs fast.

• Consider alternative types of computation (such as randomized computation).

Computability Theory

• Alan Turing, among other mathematicians, discovered in the 1930s that certain basic problems cannot
be solved by computers.

• One example is the problem of determining whether a mathematical statement is true or false.

• Theoretical models of computers developed at that time eventually lead to the construction of actual
computers.

• The theories of computability and complexity are closely related.

• Complexity theory seeks to classify problems as easy ones and hard ones, while in computability theory
the classification is by whether the problem is solvable or not.

Automata Theory

• The theories of computability and complexity require a precise, formal definition of a computer .

• Automata theory deals with the definitions and properties of mathematical models of computation.

• Two basic and practically useful models:

– Finite-state, or simply finite, automaton

– Context-free grammar (pushdown automaton)

Why You Should Learn the Subject

• It will certainly broaden your knowledge of what computing is fundamentally.

• Below are a few things you may find particularly useful or interesting:

– Regular expressions, in their original simplest form, for describing patterns of strings/words.

– Context-free grammars for describing the syntax of a (programming) language.

– The so-called Turing machines, as the most commonly used model for a computer.

– Exemplar undecidable problems, which cannot be (perfectly) solved by computers.

– A proof of SAT being NP-hard, where every NP problem is shown to be polynomially reducible
to SAT.

2

2 Mathematical Notions and Terminology

Sets

• Set, element (member), subset, proper subset

• Multiset

/* A multiset (or bag) allows for multiple instances of a same element. The sets {1, 2} and {1, 1, 2},
when seen as multisets, are different.*/

• Description of a set

• The empty set (∅)

• Finite set, infinite set

• Union, intersection, complement

• Power set

• Venn diagram

Sets (cont.)

Source: [Sipser 2006]

Sets (cont.)

Source: [Sipser 2006]

3

Sets (cont.)

Source: [Sipser 2006]

Sets (cont.)

Source: [Sipser 2006]

Sequences and Tuples

• A sequence of objects is a list of these objects in some order. Order is essential and repetition is also
allowed.

• Finite sequences are often called tuples. A sequence with k elements is a k-tuple; a 2-tuple is also
called a pair.

• The Cartesian product , or cross product, of A and B, written as A × B, is the set of all pairs (x, y)
such that x ∈ A and y ∈ B.

• Cartesian products generalize to k sets, A1, A2, . . ., Ak, written as A1×A2× . . .×Ak. Every element
in the product is a k-tuple.

• Ak is a shorthand for A×A× . . .×A (k times).

Functions

• A function sets up an input-output relationship, where the same input always produces the same
output.

• If f is a function whose output is b when the input is a, we write f(a) = b.

• A function is also called a mapping ; if f(a) = b, we say that f maps a to b.

4

Functions (cont.)

• The set of possible inputs to a function is called its domain; the outputs come from a set called its
range.

• A function is onto if it uses all the elements of the range (it is one-to-one if . . .).

• The notation f : D −→ R says that f is a function with domain D and range R.

• More notions and terms: k-ary function, unary function, binary function, infix notation, prefix notation

Relations

• A predicate, or property, is a function whose range is {TRUE,FALSE}.

• A predicate whose domain is A1 × A2 × . . . × Ak is called a k-ary relation on A1, A2, . . . , Ak. When
the Ai’s are the same set A, it is simply called a k-ary relation on A.

• A 1-ary relation is usually called a unary relation and a 2-ary relation is called a binary relation.

Equivalence Relations

• An equivalence relation is a special type of binary relation that captures the notion of two objects
being equal in some sense.

• A binary relation R on A is an equivalence relation if

1. R is reflexive (for every x in A, xRx),

2. R is symmetric (for every x and y in A, xRy if and only if yRx), and

3. R is transitive (for every x, y, and z in A, xRy and yRz implies xRz).

Graphs

• Undirected graph, node (vertex), edge (link), degree

• Description of a graph: G = (V,E)

• Labeled graph

• Subgraph, induced subgraph

• Path, simple path, cycle, simple cycle

• Connected graph

• Tree, root, leaf

• Directed graph, outdegree, indegree

• Strongly connected graph

5

Graphs (cont.)

Source: [Sipser 2006]

Graphs (cont.)

Source: [Sipser 2006]

Graphs (cont.)

Source: [Sipser 2006]

6

Graphs (cont.)

Source: [Sipser 2006]

Graphs (cont.)

Source: [Sipser 2006]

Graphs (cont.)

Source: [Sipser 2006]

7

Strings and Languages

• An alphabet is any finite set of symbols.

• A string over an alphabet is a finite sequence of symbols from that alphabet.

• The length of a string w, written as |w|, is the number of symbols that w contains.

• The string of length 0 is called the empty string, written as ε.

• The concatenation of x and y, written as xy, is the string obtained from appending y to the end of x.

• A language is a set of strings.

• More notions and terms: reverse, substring, lexicographic ordering.

Boolean Logic

• Boolean logic is a mathematical system built around the two Boolean values TRUE (1) and FALSE
(0).

• Boolean values can be manipulated with Boolean operations: negation or NOT (¬), conjunction or
AND (∧), disjunction or OR (∨).

0 ∧ 0
∆
= 0 0 ∨ 0

∆
= 0 ¬0

∆
= 1

0 ∧ 1
∆
= 0 0 ∨ 1

∆
= 1 ¬1

∆
= 0

1 ∧ 0
∆
= 0 1 ∨ 0

∆
= 1

1 ∧ 1
∆
= 1 1 ∨ 1

∆
= 1

• Unknown Boolean values are represented symbolically by Boolean variables or propositions, e.g., P , Q,
etc.

Boolean Logic (cont.)

• Additional Boolean operations: exclusive or or XOR (⊕), equality/equivalence (↔ or ≡), implication
(→).

0⊕ 0
∆
= 0 0↔ 0

∆
= 1 0→ 0

∆
= 1

0⊕ 1
∆
= 1 0↔ 1

∆
= 0 0→ 1

∆
= 1

1⊕ 0
∆
= 1 1↔ 0

∆
= 0 1→ 0

∆
= 0

1⊕ 1
∆
= 0 1↔ 1

∆
= 1 1→ 1

∆
= 1

• All in terms of conjunction and negation:

P ∨Q ≡ ¬(¬P ∧ ¬Q)
P → Q ≡ ¬P ∨Q
P ↔ Q ≡ (P → Q) ∧ (Q→ P)
P ⊕Q ≡ ¬(P ↔ Q)

8

Logical Equivalences and Laws

• Two logical expressions/formulae are equivalent if each of them implies the other, i.e., they have the
same truth value.

• Equivalence plays a role analogous to equality in algebra.

• Some laws of Boolean logic:

– (Distributive) P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

– (Distributive) P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R)

– (De Morgan’s) ¬(P ∨Q) ≡ ¬P ∧ ¬Q
– (De Morgan’s) ¬(P ∧Q) ≡ ¬P ∨ ¬Q

3 Definitions, Theorems, and Proofs

Definitions, Theorems, and Proofs

• Definitions describe the objects and notions that we use. Precision is essential to any definition.

• After we have defined various objects and notions, we usually make mathematical statements about
them. Again, the statements must be precise.

• A proof is a convincing logical argument that a statement is true. The only way to determine the
truth or falsity of a mathematical statement is with a mathematical proof.

• A theorem is a mathematical statement proven true. Lemmas are proven statements for assisting the
proof of another more significant statement.

• Corollaries are statements seen to follow easily from other proven ones.

Finding Proofs

• Find proofs isn’t always easy; no one has a recipe for it.

• Below are some helpful general strategies:

1. Carefully read the statement you want to prove.

2. Rewrite the statement in your own words.

3. Break it down and consider each part separately. For example, P ⇐⇒ Q consists of two parts:
P → Q (the forward direction) and Q→ P (the reverse direction).

4. Try to get an intuitive feeling of why it should be true.

Tips for Producing a Proof

• A well-written proof is a sequence of statements, wherein each one follows by simple reasoning from
previous statements in the sequence.

• Tips for producing a proof:

– Be patient. Finding proofs takes time.

– Come back to it. Look over the statement, think about it, leave it, and then return some time
later.

– Be neat. Use simple, clear text and/or pictures; make it easy for others to understand.

– Be concise. Emphasize high-level ideas, but be sure to include enough details of reasoning.

9

An Example Proof

Theorem 1. For any two sets A and B, A ∪B = A ∩B.

Proof. We show that every element of A ∪B is also an element of A ∩B and vice versa.

Forward (x ∈ A ∪B → x ∈ A ∩B):
x ∈ A ∪B

→ x 6∈ A ∪B , def. of complement
→ x 6∈ A and x 6∈ B , def. of union
→ x ∈ A and x ∈ B , def. of complement
→ x ∈ A ∩B , def. of intersection

Reverse (x ∈ A ∩B → x ∈ A ∪B): . . .

Another Example Proof

Theorem 2. In any graph G, the sum of the degrees of the nodes of G is an even number.

Proof.

• Every edge in G connects two nodes, contributing 1 to the degree of each.

• Therefore, each edge contributes 2 to the sum of the degrees of all the nodes.

• If G has e edges, then the sum of the degrees of the nodes of G is 2e, which is even.

Another Example Proof (cont.)

Source: [Sipser 2006]

Another Example Proof (cont.)

Source: [Sipser 2006]

10

4 Types of Proof

Types of Proof

• Proof by construction: prove that a particular type of object exists, by showing how to construct the
object.

• Proof by contradiction: prove a statement by first assuming that the statement is false and then showing
that the assumption leads to an obviously false consequence, called a contradiction.

• Proof by induction: prove that all elements of an infinite set have a specified property, by exploiting
the inductive structure of the set.

Proof by Construction

Theorem 3. For each even number n greater than 2, there exists a 3-regular graph with n nodes.

Proof. Construct a graph G = (V,E) with n (= 2k > 2) nodes as follows.

Let V be {0, 1, . . . , n− 1} and E be defined as

E = {{i, i + 1} | for 0 ≤ i ≤ n− 2} ∪
{{n− 1, 0}} ∪
{{i, i + n/2} | for 0 ≤ i ≤ n/2− 1}.

Proof by Contradiction

Theorem 4.
√

2 is irrational.

Proof. Assume toward a contradiction that
√

2 is rational, i.e.,
√

2 = m
n for some integers m and n, which

cannot both be even.
√

2 = m
n , from the assumption

n
√

2 = m , multipl. both sides by n
2n2 = m2 , square both sides
m is even , m2 is even
2n2 = (2k)2 = 4k2 , from the above two
n2 = 2k2 , divide both sides by 2
n is even , n2 is even

Now both m and n are even, a contradiction.

Example: Home Mortgages
P : the principle (amount of the original loan).
I: the yearly interest rate.
Y : the monthly payment.
M : the monthly multiplier = 1 + I/12.
Pt: the amount of loan outstanding after the t-th month; P0 = P and Pk+1 = PkM − Y .

Theorem 5. For each t ≥ 0,

Pt = PM t − Y (
M t − 1

M − 1
).

11

Proof by Induction

Theorem 6. For each t ≥ 0,

Pt = PM t − Y (
M t − 1

M − 1
).

Proof. The proof is by induction on t.

• Basis: When t = 0, PM0 − Y (M0−1
M−1) = P = P0.

Proof by Induction (cont.)

• Induction step: When t = k + 1 (k ≥ 0),

Pk+1

= {definition of Pt}
PkM − Y

= {the induction hypothesis}
(PMk − Y (Mk−1

M−1))M − Y

= {distribute M and rewrite Y }
PMk+1 − Y (Mk+1−M

M−1)− Y (M−1
M−1)

= {combine the last two terms}
PMk+1 − Y (Mk+1−1

M−1)

12

