Theory of Computing [Compiled on April 25, 2022] Spring 2022

Suggested Solutions to Midterm Problems

1. Draw the state diagram of a DFA, with as few states as possible, that recognizes the
language {w € {0,1}* | w doesn’t contain 101 or 010 as a substring}.

Solution.

2. Let L ={w € {0,1}* | w contains 101 as a substring or ends with 10}.

(a) Draw the state diagram of an NFA, with as few states as possible, that recognizes
L. The fewer states your NFA has, the more points you will be credited for this
problem.

Solution.
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(b) Convert the preceding NFA systematically into an equivalent DFA (using the proce-
dure discussed in class). Do not attempt to optimize the number of states, though
you may omit the unreachable states.

O

Solution.



O

n mod K

3. Is the language {a"b( ) |n >0 and K is a positive integral constant} regular? Please

justify your answer.

Solution. The language, for every given integer K > 1, is regular. There are several ways
to show this. We give a regular expression to describe the language, considering two cases
K =1 and K > 1 separately.

e K = 1: In this case, (n mod K) is always 0. So, the language is the set of strings
of any positive number of a’s, which may be described by the regular expression a™
(i.e., aa™).

e K > 1: The language may be viewed as the union of {a*®*t° | i > 0} (i.e., {(a®)? |
i > 0}) and {a®H | i>0and 1 <j < K —1} (ie, {(a®)a/t? | i > 0and 1 <
j < K —1}). Hence, it may be described by the regular expression (a®)* | (a®)*(ab |
aabb | --- | aE=DpE-1),

4. Given a language L C ¥*, an equivalence relation Ry over ¥* is defined follows:

xRy iff Vze ¥*(zz€ L <> yz € L).

Suppose L = {w € {0,1}* | w contains the substring 101}. What are the equivalence
classes determined by Rp? Please give an intuitive verbal description for each of the
equivalence classes.

Solution. Applying Myhill-Nerode Theorem, we may discover the equivalence classes by
examining a minimal DFA that recognizes L as below.
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So, there are four equivalence classes corresponding to the four states:



(1) The subset of {0,1}* containing ¢ and all strings ending with 0 but without 101 as
a substring.

(2) The subset containing all strings ending with 1 but without 101 as a substring.
(3) The subset containing all strings ending with 10 but without 101 as a substring.
(4) The subset containing all strings with 101 as a substring.

O

5. An all-NFA M is a 5-tuple (@, 3,0, q, F') that accepts € ¥* if every possible state that
M could be after reading input z is a state from F. Note, in contrast, that an ordinary
NFA accepts a string if some state among these possible states is an accept state. Please
give a formal definition of this computation model, as we did in class for an NFA, including
a formal definition of how an all-NFA accepts an input word.

Solution. We offer two different formal definitions for an all-NFA, one with e-transitions
(like for an NFA given in class) and the other without but with multiple start/initial
states.

An all-NFA is a 5-tuple (Q, %, 9, qo, F'), where

(a) @ is a finite set of states,
(b) X is a finite alphabet,
(c) §:Q x 3. — P(Q) is the transition function,
(d)
)

(e) F C @ is the set of accept states.

qo € @ is the start state, and

A run of an all-NFA on a word w, seen as y1ys - . . Yym With y; € X, is a sequence of states
T0,T1,--.,Tm Such that 7o = qo and r;41 € §(ri,yi+1) for i = 0,1,...,m — 1. The run is
accepting if rp, € F. An all-NFA M accepts a word w if M has at least one run on w and
every run is accepting.

Alternatively, an all-NFA is a 5-tuple (Q, 3,0, Qo, F'), where

is a finite set of states,
Y is a finite alphabet,
(c) §:Q x X — P(Q) is the transition function,
(d) Qo C @ is the set of start states, and
(e) F C @ is the set of accept states.
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To facilitate the formal definition of computation of such an all-NFA, we first extend the
transition ¢ to sets of states such that 6(Q’,a) = quQ' d(q,a), for @ CQ and a € X. A
run of an all-NFA on a word w = wyws ... w, with w; € X, is a sequence of sets of states
Ry, Ry, ..., Ry, such that Ry = Qo, d(R;,w;+1) = Ri+1, and, for every ¢ € R;, there is
some ¢ € Rt s.t. ¢ € §(q, wit1), for i =0,1,...,n— 1. The run is accepting if R, C F.
An all-NFA M accepts a word w if M has an accepting run on w. O

6. Give a context-free grammar that generates the following language: {w € {a,b,c}* |
the number of a’s in w equals that of b’s or ¢’s} (no restriction is imposed on the order in
which the input symbols may appear). Please make the CFG as simple as possible and
explain the intuition behind it.



Solution. There are several plausible ways of defining the CFG. Below is a more intuitive
version:

S —- T|U
T — abT |aTb|Tab|baT |bTa|Tha |TT |c|e
U — acU|aUc|Uac|caU |cUa|Uca|UU |b|e

It is equivalent to the following much simpler version:

S —» T|U
T — aTb|bTa|TT |cle
U — aUc|cUa|UU |b|e

The production rules for 7' (analogous for U) can be seen as derived from those for
generating strings of balanced parentheses, the main difference being that T allows pairs
of parentheses to appear in reversed order. T may be forced to appear in a particular
position of a string (of terminals and non-terminals) during a derivation, which means ¢
can be placed in any desired position of a generated string. O

. Prove that, if C' is a context-free language and R a regular language, then C'N R is context
free. (Hint: combine the finite control part of a PDA and that of an NFA.)

Solution. The proof is by construction. Given a PDA P for language C' and a DFA A
for language R, we construct a PDA P’ that recognizes C N R by simulating P and A in
parallel.

Formally, let

P =(Qp,%,T,dp,qpr, Fp)
be the PDA that recognizes C', and let
A=(Qa,%,04,q4,Fa)
be the DFA that recognizes R. Construct PDA
P'=(Qp*xQa,X,T,0,(qp,qa), Fp X Fa)
where, for p € Qp, ¢ € Q4, a € X, and b € T', 6((p, q),a,b) is defined to be the set of all

pairs ((r, s), ¢) such that:

(1) T C) € 5P(p7 a, b))
(2) s =04(q,a) when a € ¥, and
) s=q

when a = e.
Od

. Prove by induction that, if G is a CFG in Chomsky normal form, then for any string
w € L(G) of length n > 1, exactly 2n — 1 steps are required for any derivation of w.

Solution. The proposition still holds even if we include all other strings not in L(G) that
can be derived from non-start symbols. We will prove this stronger variant by induction
on n, the length of an arbitrary nonempty string w. The strengthening in fact will make



the inductive proof easier, as we will have a stronger induction hypothesis for the inductive
step.

Base case (Jw| = 1): The only way to produce a string of length 1 is by applying at the
beginning a rule of the form A — a, which constitutes a one-step derivation.

Inductive step (Jw| = n > 1): To produce a string of length larger than one, one must
first apply a rule of the form A — BC, where B and C are non-start symbols. Suppose
the B part eventually produces a string x of length [ and the C part a string y of length
m such that xy = w and [ + m = n. From the induction hypothesis, these two parts of
derivation take 2l — 1 and 2m — 1 steps, respectively. So, the derivation of a string of
length n requires 1+ (20 — 1) + (2m — 1) = 2(I + m) — 1 = 2n — 1 steps. 0

9. Prove each of the following statements:

(a) The class of context-free languages is closed under union.

Solution. Let A and B be two context-free languages. Suppose they may be generated
by CFGs (V4,%,R4,S4) and (Vp, %, Rp, Sp) respectively, where V4 and Vp are
disjoint. Then, (V4 U Vg, X, {S — Sa | S} UR4 U Rp,S) will be a CFG that
generates L(A) U L(B). O

(b) The class of context-free languages is not closed under intersection.

Solution. Let A = {a™b"c¢™ | n,m > 0} and B = {a™b"c" | n,m > 0}, which are
context free. AN B = {a"b"c™ | n > 0} is not context free. O

(c) The class of context-free languages is not closed under complement.

Solution. Intersection may be expressed in terms of complement and union: ANB =

AUB. From (a) and (b), the class of context-free languages is closed under the
union operation, but it is not closed under the intersection operation. If the class of
context-free languages were closed under the complement operation, then it would
be closed under intersection, contradicting the result in (b). O

10. Prove, using the pumping lemma, that {1”2 | n > 0} is not context free.

Solution. Assume toward a contradiction that p is the pumping length for {1"° | n > 0}.
Consider a string s = 17" in the language. Suppose that s can be pumped by dividing s as
wayz = 1119181119 ~i=3=k~1 where j+1 > 0 (Juy| > 0) and j+k+1 < p (jozy| < p). If we

pump s up to 1¢(19)21%(11)219° —i—i—k—l — qi+25+k+20p* —imj—k—l — 1P* 5+ A5 0 < j+1 <

PP <pP+i+l<p +p<p?®+2p+1=(p+1)? and hence 1¢(19)21F(11)21p*~i=i—k~I

is not in {1"* | n > 0}. So, s cannot be pumped, a contradiction. O
Appendix

e A context-free grammar is in Chomsky normal form if every rule is of the form

A — BC or
A — a

where a is any terminal and A, B, and C are any variables—except that B and C may
not be the start variable. In addition,

S —¢

is permitted if S is the start variable.



e (Pumping Lemma for Context-Free Languages)
If A is a context-free language, then there is a number p such that, if s is a string in A
and |s| > p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:
1. for each i > 0, wv'ay'z € A,
2. |vy| > 0, and
3. |vzy| < p.



