
Homework 1 - 2

Homework 1 - 2 Theory of Computing 2024 1 / 46

Menu

1 HW#1
1
2
3
4
5

2 HW#2
1
2
3
4
5
6

Homework 1 - 2 Theory of Computing 2024 2 / 46

HW#1 Problem 1

Homework 1 - 2 Theory of Computing 2024 3 / 46

HW#1 Problem 1

Directed graph of a binary relation R:

x R y :

x yR

Homework 1 - 2 Theory of Computing 2024 4 / 46

HW#1 Problem 1

Let R be a binary relation on a set S :

Reflexive: ∀x ∈ S , x R x .

x R

Symmetric: ∀x , y ∈ S , x R y iff y R x .

x y
R

R
x y

Transitive: ∀x , y , z ∈ S , x R y and y R z implies x R z .

x y zR R
implies

x y zR R

R

Homework 1 - 2 Theory of Computing 2024 5 / 46

HW#1 Problem 1

(a) Reflexive and symmetric but not transitive

x y z

Homework 1 - 2 Theory of Computing 2024 6 / 46

HW#1 Problem 1

(b) Reflexive and transitive but not symmetric

x y z

Homework 1 - 2 Theory of Computing 2024 7 / 46

HW#1 Problem 1

(c) Symmetric and transitive but not reflexive

x y z

Homework 1 - 2 Theory of Computing 2024 8 / 46

HW#1 Problem 2

Homework 1 - 2 Theory of Computing 2024 9 / 46

HW#1 Problem 2

A binary relation R on a set S is an equivalence relation if

R is reflexive: ∀x ∈ S , x R x ,

R is symmetric: ∀x , y ∈ S , x R y iff y R x , and

R is transitive: ∀x , y , z ∈ S , x R y and y R z implies x R z .

Homework 1 - 2 Theory of Computing 2024 10 / 46

HW#1 Problem 2

(a) R: For a fixed non-zero divisor d , the two numbers have the
same remainder r .

Reflexive: satisfied, ∀x ∈ N, for a fixed non-zero divisor, x has
same remainder with itself.

Symmetric: satisfied, ∀x , y ∈ N, x , y have same remainder
implies y , x have same remainder.

Transitive: satisfied,∀x , y , z ∈ N. If x , y have the same
remainder r , and y , z have the same remainder, the remainder of
z is also r . Therefore x , z have same remainder.

So, R is an equivalence relation.

Homework 1 - 2 Theory of Computing 2024 11 / 46

HW#1 Problem 2

(b) R: The two real numbers are approximately equal.
Suppose we define that two real numbers x and y are approximately
equal if |x − y | ≤ 0.1

Reflexive: satisfied, ∀x ∈ R, |x − x | = 0 ≤ 0.1

Symmetric: satisfied, ∀x , y ∈ R, if |x − y | ≤ 0.1, then
|y − x | = |x − y | ≤ 0.1

Transitive: violated, counterexample: |0.1− 0.2| ≤ 0.1,
|0.2− 0.3| ≤ 0.1, but |0.1− 0.3| = 0.2 > 0.1

So, R is not an equivalence relation.

Homework 1 - 2 Theory of Computing 2024 12 / 46

HW#1 Problem 3

Homework 1 - 2 Theory of Computing 2024 13 / 46

HW#1 Problem 3

A relation R is a subset of the Cartesian product of several sets.

A relation R ⊆ A1 × A2 × · · · × Ak is called a k-ary relation.

A 2-ary relation is usually called a binary relation.

Homework 1 - 2 Theory of Computing 2024 14 / 46

HW#1 Problem 3

A function is a binary relation that follows the form
f ⊆ (A1 × · · · × Ak)× B , namely the element of a function is a
pair, and the first element of the pair is also a k-tuple.

For all a ∈ (A1 × · · · × Ak), exists b ∈ B such that (a, b) ∈ f ,
where a is the domain of the function and b is the range.

For all ai , aj ∈ (A1 × · · · × Ak), bi , bj ∈ B .
If (ai , bi) ∈ f , (aj , bj) ∈ f and ai = aj , then bi = bj .

A function with a k-ary relation as its first component of the
pair is called a k-ary function.

We write f (a) = b if (a, b) ∈ f . Similarly, we write
f (a1, a2, · · · , ak) = b if ((a1, a2, · · · , ak), b) ∈ f

Homework 1 - 2 Theory of Computing 2024 15 / 46

HW#1 Problem 4

Homework 1 - 2 Theory of Computing 2024 16 / 46

HW#1 Problem 4

Note: Self loop is not allowed in a simple graph.

Proved by contradiction.

Supposed that there is a graph with n nodes having no nodes with
the same degree.

No nodes with the same degree means that : each node has distinct
degree from 0 to n − 1.
the node with n − 1 degree must be connected by every other nodes
in this graph because no self loop in this gragh.
but in our assumption, there must be a node with 0 degree.
Contradiction happens.

Homework 1 - 2 Theory of Computing 2024 17 / 46

HW#1 Problem 5

Homework 1 - 2 Theory of Computing 2024 18 / 46

HW#1 Problem 5

The proof is by induction on the number n of players.
Base case (n = 2): There are exactly two players, say A and B.
Either A beat B, in which case we order them as A, B, or B beat A,
in which case we order them as B, A.

Homework 1 - 2 Theory of Computing 2024 19 / 46

HW#1 Problem 5

Induction step (n > 2): Pick any of the n players, say a. From the
induction hypothesis, the other n − 1 players can be ordered as
p1, p2, ..., pn−1 such that p1 beat p2, p2 beat p3, ..., and pn−2 beat
pn−1. We now exam the result of the match played between a and
p1. If a beat p1, then we get a satisfying order a, p1, p2, ..., pn−1.
Otherwise (p1 beat a), we continue to exam the result of the match
played between a and p2. If a beat p2, then we get a satisfying order
p1, a, p2, ..., pn−1. Otherwise (p2 beat a), we continue as before. We
end up either with p1, p2, ..., pi−1, a,pi , ..., pn−1 for some i ≤ n − 1 or
eventually with p1, p2, ..., pn−1, a if a is beaten by every other player,
in particular pn−1.

Homework 1 - 2 Theory of Computing 2024 20 / 46

HW#2 Problem 1

Homework 1 - 2 Theory of Computing 2024 21 / 46

HW#2 Problem 1

q3

start

q4q5 q2 q1

a

b

a

b

a

b

a

b

a

b

Homework 1 - 2 Theory of Computing 2024 22 / 46

HW#2 Problem 1

q3

start

q4q5 q2 q1

a

b

a

b

a

b

a

b

a

b

Intuitive characterization of the strings that M accepts:

Let x := 0.
x := x + 1 when M reads a, x := x − 1 when M reads b. The value
of x should be in [−2, 2] (which means −2− 1 = −2 and 2 + 1 = 2).
M accepts if the final value of x = 0.

Homework 1 - 2 Theory of Computing 2024 23 / 46

HW#2 Problem 2

Homework 1 - 2 Theory of Computing 2024 24 / 46

HW#2 Problem 2 (a)

Simpler language: {w | w starts with an a}.

qa1

start

qa2qa3
b

a

a, ba, b

Simpler language: {w | w has at most one b}.

qb1start qb2 qb3

a

b

a

b

a, b

Homework 1 - 2 Theory of Computing 2024 25 / 46

HW#2 Problem 2 (a)

Language: {w | w starts with an a and has at most one b}.

q(a1,b1)start q(a3,b2) q(a3,b3)

q(a2,b1) q(a2,b2) q(a2,b3)

b

a

a

b

a, b

a

b

a

b

a, b

Homework 1 - 2 Theory of Computing 2024 26 / 46

HW#2 Problem 2 (b)

Simpler language: {w | w has an odd number of a’s}.

qa1start qa2

b

a

b

a

Simpler language: {w | w ends with a b}.

qb1start qb2

a

b

b

a

Homework 1 - 2 Theory of Computing 2024 27 / 46

HW#2 Problem 2 (b)

Language: {w | w has an odd number of a’s and ends with a b}.

q(a1,b1)start q(a1,b2)

q(a2,b1) q(a2,b2)

b

a
a

b

b

a
a

b

Homework 1 - 2 Theory of Computing 2024 28 / 46

HW#2 Problem 3

Homework 1 - 2 Theory of Computing 2024 29 / 46

HW#2 Problem 3 (a)

Simpler language: {w | w contains the substring 110}.

q1start q2 q3 q4

1

0

1

0

0

1 0, 1

Homework 1 - 2 Theory of Computing 2024 30 / 46

HW#2 Problem 3 (a)

Language: {w | w doesn’t contain the substring 110}.

q1start q2 q3 q4

1

0

1

0

0

1 0, 1

Homework 1 - 2 Theory of Computing 2024 31 / 46

HW#2 Problem 3 (b)

Language: {w | every odd position of w is a 1}.

q0start q1

q2

1

0
0, 1

0, 1

Homework 1 - 2 Theory of Computing 2024 32 / 46

HW#2 Problem 4

Homework 1 - 2 Theory of Computing 2024 33 / 46

HW#2 Problem 4

Let DFA M recognizes the language A, and we can construct a
NFA MR which recognizes AR according to the following:

MR conserves all states from M and MR ’s alphabet is as same
as M .

Reverse all the transitions of M as the transitions of MR .
e.q. δ(q1, a) = q2 → δR(q2, a) = q1.

Add an additional initial state q0 to MR . Construct the
translations from q0 to all the accepting states of M with the
label ϵ.

The accepting state of MR is M ’s initial state.

For any string w , M accept w iff MR recognize wR .
Because MR recognizes AR , AR is regular.

Homework 1 - 2 Theory of Computing 2024 34 / 46

HW#2 Problem 4

e.q. : M

qestart

qa

qb qbb

a

b

a, b

b

a

a, b

Homework 1 - 2 Theory of Computing 2024 35 / 46

HW#2 Problem 4

Reverse all the transitions:

qestart

qa

qb qbb

a, b

a

b

b

a, b

a

Homework 1 - 2 Theory of Computing 2024 36 / 46

HW#2 Problem 4

Change the initial state into accepting state:

qe

qa

qb qbb

start

start

a, b

a

b

b

a, b

a

Homework 1 - 2 Theory of Computing 2024 37 / 46

HW#2 Problem 4

Add an additional initial state q0:

qe

qa

qb qbb

q0 start

a, b

a

b

b

a, b

a

Homework 1 - 2 Theory of Computing 2024 38 / 46

HW#2 Problem 4

Construct the translations from q0 to all the accepting states of M
with the label ϵ, then we can get the nfa MR :

qe

qa

qb qbb

q0 start

a, b

a

b

b

a, b

a

ϵ

ϵ

Homework 1 - 2 Theory of Computing 2024 39 / 46

HW#2 Problem 5

Homework 1 - 2 Theory of Computing 2024 40 / 46

HW#2 Problem 5

Consider the situation of carry, starting from the tail of B is easier
than starting from the head. So we first show that BR is regular. We
can construct a dfa that recognizes BR when considering the carry
and the correctness of calculation.

Homework 1 - 2 Theory of Computing 2024 41 / 46

HW#2 Problem 5

The dfa that recognizes BR :

qnoncarrystart

qerror

qcarry

00
0

,
01
1

,
10
1

 11
0

00
1

,
01
0

,
10
0

,
11
1

01
0

,
10
0

,
11
1

00
1

00
0

,
01
1

,
10
1

,
11
0

all

Homework 1 - 2 Theory of Computing 2024 42 / 46

HW#2 Problem 5

Because there is a dfa that recognizes BR , BR is regular. According
to the result claimed in Problem 4 (if A is regular, so is AR), we can
say that (BR)R = B is regular.

Homework 1 - 2 Theory of Computing 2024 43 / 46

HW#2 Problem 6

Homework 1 - 2 Theory of Computing 2024 44 / 46

HW#2 Problem 6

Suppose M1 = (Q1,Σ1, δ1, q1,F1) recognizes A1 and
M2 = (Q2,Σ2, δ2, q2,F2) recognizes A2.
Construct M = (Q,Σ, δ, q0,F) to recognize A1 ∪ A2:

Q = (Q1 ∪ {qf })× (Q2 ∪ {qf }).
Σ = Σ1 ∪ Σ2.

δ((r1, r2), a) =
(δ1(r1, a), δ2(r2, a)) if (r1, r2 ̸= qf) and (a ∈ (Σ1 ∩ Σ2))

(δ1(r1, a), qf) if (r1 ̸= qf ∧ a ∈ Σ1) and (r2 = qf ∨ a /∈ Σ2)

(qf , δ2(r2, a)) if (r2 ̸= qf ∧ a ∈ Σ2) and (r1 = qf ∨ a /∈ Σ1)

(qf , qf) if (r1 = qf ∨ a /∈ Σ1) and (r2 = qf ∨ a /∈ Σ2)

q0 = (q1, q2).

F = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2}.

Homework 1 - 2 Theory of Computing 2024 45 / 46

HW#2 Problem 6

Why we need qf ?

Because when we read a character a that in Σ1 but not in Σ2, A2

cannot recognize a so M2 must fail and never accept. If there’s no
qf , M cannot find out this situation.

Homework 1 - 2 Theory of Computing 2024 46 / 46

	HW#1
	1
	2
	3
	4
	5

	HW#2
	1
	2
	3
	4
	5
	6

