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HW#38 Problem 1

(10 points) Give a formal definition (with a state diagram) of a Turing machine that,
given a string of an even length as the input, splits the input string into two halves and
add a # in the middle to separate the two substrings. The input alphabet is {0,1}.

Homework 8 - 10 Theory of Computing 2024 3/64



HW#38 Problem 1

The Turing machine T™ for the problem is a 7-tuple
(Q, 5,16, 44 Qaceepts Ireject ) Where

Q is the set of states,

¥ ={0,1},

I ={0,1,0,1,#, },

q, is the start state,

Qaccept 1S the accept state, and

Qreject IS the reject state.
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HW38 Problem 1
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HW#38 Problem 2

(Problem 3.10; 20 points) Let ¢;z™ + cpz™ 1 + -+ + ¢ + 11 be a polynomial with a
root at £ = xp. Let cmax be the largest absolute value of a ¢;. Show that
Cmax

ol < (n+1
2ol < (n+ )2
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HW#38 Problem 2

Since x is a root of the polynomial,
0 1
Cxy +cry T + ...+, rg+c, 1 =0

By triangle inequality,
1zl + ezl + e,z ey =0<
lerag ]+ legwg ™ + oo+ lepmol + len ]

Case 1 |z4] < 1:
Since (n + 1)C|m—z > 1, |zg| < (n+1)5maz

a
¢ leq |
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HW#38 Problem 2

Case 2 |z4| > 1:

We can get the upper bound of each term by c,, .,

|01$6L| + |02$6L_1| +.ot |Cnx0| + |Cn+1| <n- Cmamlxg_ll t Craz
Divide |¢;| on both sides:

2|+ 12 Mg~ + o+ [ o] + =2 < (n+ 1) - Fpaefag ™

Since |22[|zg | + ... + |22 ][zg| + |=2] are all positive,

2] < (n+1) - “oe|ag ™

20| < (n 4 1)5mae

a
leq]
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HW+#38 Problem 3

(Problem 3.11; 20 points) Show that single-tape TMs that cannot write on the portion of
the tape containing the input string recognize only regular languages.
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HW#8 Problem 3

Let M = (Q, %, T, qos Quccepts Greject) D€ @ single-tape T™ that
cannot write on the input portion of the tap. A typical case when M
works on an input string x is as follows:

the tape head will stay in the input portion for some time, and then
enter the non-input portion (i.e., the portion of the tape on the right
of the |z|** cells) and stay there for some time, then go back to the
input portion, and stay there for some time, and then enter the
non-input portion, and so on.

I [T 1% 1

input portion  non-input portion
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HW#8 Problem 3

It

out

We call the event that the tape head switches from input portion to
non-input portion an out event, and the event that the tape head
switches from non-input portion to input-portion an in event.
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HW#8 Problem 3

Let first, denote the state that M is in just after its first "out”
event (i.e., the state of M when it first enters the non-input portion).

In case M never enters the non-input portion, we assign

Jirst, = Quecept if M accepts z, and assign first, = g.¢ject if M
does not accept .
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HW#8 Problem 3

Next, we define a characteristic function f, such that for any ¢ € Q,
fz(q@) = ¢’ implies that if M is at state ¢ just after its "in" event, M
will move to state ¢’ after its next "out” event.

In case M never enters the non-input portion again, we assign

f2(@) = Qaceept If M enters the accept state inside the input portion,
and g, e+ Otherwise.
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HW#8 Problem 3

Now we can define the binary relation R; over ¥* for the language L
of TM M as follows:

x Ry y iff
o first, = first,, and
o forall ¢, f,(q) = fy(Q)-

We can observe the following property (requirements for
Myhill-Nerode Theorem):

x R; y iff x and y are indistinguishable by L
(namely, x Ry y iff Vz € ¥*(zz € L > yz € L))

Why?
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HW#8 Problem 3

Let we consider two strings x and y with the same first and f:
Situation 1:

If first, = first, = (Quccept OF reject), T and y will both be
accepted or rejected at the same time before "out” event happens.
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HW#8 Problem 3

—

Situation 2:

If first, = first, = q¢ # (Quccept O Greject)» My and M, will stay in
the same state g and the heads of them stay in the same position of
empty portion of two tapes ,which means that M, and M, will take
the same actions in this portion (write the same symbol and move to
the same state, i.e. if M, accepts, My accepts at the same time).
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HW#8 Problem 3

X a

]

Y alc|d
(I

Situation 2 (cont.):
How about "in"” event happens?

Situation 2-1:

Because for all ¢, f,(¢) = f,(q), and M, and M, stay at the same
state ¢ when they are about to perform the "in" event, if

fw (q) = fy(q) = (qaccept or qreject)' Similarlyv z and Yy W'" bOth be
accepted or rejected at the same time inside the input portion.

Homework 8 - 10
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HW#8 Problem 3

x alc|d|b|U
L 1
Y alc|d|b|U|U|lU
[ *

Situation 2-2:

If fw(q) = fy(q) = q/ 7é (qaccept or qreject)' M:c and My will Stay in
the same state ¢’ and the heads of them stay in the same position of
non-input portion of two tapes (not empty now, but with the same
string). Similarly, M, and M,, will take the same actions in this
portion.

If "in” event happens again, Situation 2 will happen repeatedly until
M, and M, accept or reject.
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HW#8 Problem 3

Now consider the strings xz and yz, you may notice that it is similar
to Situation 2-2, the non-input portion is not empty doesn’t affect
M, and M, to take the same actions in this portion.

So, M accepts zz if and only if M accepts yz, i.e. x and y are
indistinguishable by M.
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HW#8 Problem 3

In this situation, we say that = and y are in the same equivalence
class (all strings in an equivalence class are indistinguishable to each
other).

How many possibilities are there at most for the equivalence classes
of M?
e first, has |Q| possibilities.
o f.(q) has |Q| possibilities for each ¢ € Q, i.e. |Q|'?! possibilities
totally.

So, there are at most |Q||Q|+1 equivalence classes, that is, the
number of distinguishable strings are finite (R, is of finite index). By
Myhill-Nerode theorem, the language L is regular.
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HW#38 Problem 4

(Problem 3.12; 20 points) Show that every infinite Turing-recognizable language has an
infinite decidable subset.
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HW#8 Problem 4

Let A be an infinite Turing-recognizable language, then there exists
an enumerator E that enumerates all strings in A.

We can construct an enumerator E’ that prints a subset of A in
lexicographic order:

1. Simulate E, when FE prints its first string wy, print w; and let

w, = wy.

2. Continue simulating FE.

3. When E is ready to print a new string w, check if w is longer than
w,. (this ensures w occurs after w,. in standard order(order by
length)). If so, then print w and let w, = w, otherwise do not print
w.

4. Go to 2.
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HW#8 Problem 4

The language of E’ is infinite since A is infinite, there exist strings in
A longer than the current w, , which means E will eventually print
one of these and so will E’.

The language of E’ language is decidable since it prints strings in
standard order.

Thus, the language of E’ is an infinite decidable subset of A.
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HW+#38 Problem 5

(20 points) Let A = {(M,N) | M is a PDA and N is a DFA such that L(M) C L(N)}.
Show that A is decidable.
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HW#8 Problem 5

Use the property: A C B< AN B = 0.
Let T™M R decides E., we can construct a decider D as follows:

D = "On input (M, N), where M is a PDA and N is a DFA:

1. Construct the complement N of V.

2. Construct a PDA P that recognizes the intersection of M and N

(the intersection of a context-free language and a regular language is
context free).

3. Let Gp be the context-free grammar that recognized by P, run R
on input (Gp).

4. If R accepts, accept; otherwise, reject.”
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HW+#38 Problem 6

Aecrg is decidable.

(Exercise 4.4; 10 points) Let Aecrg = {(G) | G is a CFG that generates ¢}. Show that

[m] = = =] Q>
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HW#8 Problem 6

We can construct a decider D as follows:

D = "On input (G), where G is a CFG:
1. Convert G to an equivalent grammar in Chomsky normal form G’.

2. If (Sy — €) € G', accept (in Chomsky normal form, only S, can
generate ¢€); otherwise, reject.”
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HW+#38 Problem 6

Reduction method:

Let T™M S decides A we can construct a decider D as follows:

CFG?

D = "On input (G), where G is a CFG:
1. Run S on input (G| e).
2. If S accepts, accept; otherwise, reject.”
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HW#9 Problem 1

(Exercise 4.7; 10 points) Let B be the set of all infinite sequences over {0,1}. Show that
B is uncountable, using a proof by diagonalization.
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HW#9 Problem 1

Suppose B is countable, we can draw a table of n € IV and
f(n) € B.
Forn e N, f(n) =b,1b,2b,,5---

n| f(n)
1| 110...
2] 001...
-3 100...
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HW#9 Problem 1

Then define a infinite sequence ¢ = ¢ cyc5... € B, where ¢; = 1—10,;.
Since c differs from the i-th sequence in the i-th bit, ¢ doesn't equal
to any f(n), contradiction!

Therefore, B is uncountable.
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HW+#9 Problem 2

(Problem 4.12; 10 points) Let A be a Turing-recognizable language consisting of descrip-
tions of Turing machines, {{M), (M2), ...}, where every M; is a decider. Prove that some
decidable language D is not decided by any decider M; whose description appears in A.
(Hint: you may find it helpful to consider an enumerator for A.)
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HW+#9 Problem 2

A & Turing-recognizable language > &4 7 3 & Deciders
AL AR B f£—18 decidable language D > € T ab ik A 2B (E4T
Decider #- decide
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HW#9 Problem 2

12 ¥ Awmasix

A B RTEIFEAM > BRAR A L Turing-recognizable > st & & A —18
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HW#9 Problem 2

51 So e S;

M, | accept accept ... reject
M, | accept reject ... accept
M, | reject accept ... reject

RBZREA > BE—ME TM M),

Mp = “On input s:

1. 3HEE s £ X &P ez 4

2. # s EAN M, ERIHE

3. If M, accepts, reject; otherwise, accept.”

BAMAERE -G8 A F P OEMTEERB TR GES

B M; &% 7% Decider » £ 6% & — T G147 > PTA M =&
Decider > &£ B M, 4 input s; TG54 M, TREGER

F sk 7 7 decidable language D T &84% A ¥ 891547 decider AT decide
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HW+#9 Problem 2

iz AR AR AUT R
—1 85 % [ 1A ] Deciders #9325
D 4r; = {{(D) | D decides a language over ¥*} R %
Turing-recognizable
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HW#9 Problem 3

(Problem 4.14; 20 points) Let C = {(G,z) | G is a CFG and z is a substring of some
y € L(G)}. Show that C is decidable. (Hint: an elegant solution to this problem uses the
decider for ECFG~)
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HW#9 Problem 3

# £ —18 decider » T HET CFG G R G ARLEMETE S y 843 = 2
CHTF

kA SR L(G) # Y'Y i2W1E language R &

—18 CFL 32 RL #9 % %4.% CFL (# PDA iz DFA #93k 84 fe—se
#A# 5 PDA)

FleL R B ARE S X2 Eqpg 49 Decider #4288 P7 T
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HW#9 Problem 3

M = "On input (G, z) where G is a CFG:

1. Construct a CFG G’ sit. L(G’) = L(G) N X*xX*
2. Run Mg, __ . oninput (G')

3. 1If MECF‘G accept, reject; otherwise, accept.”

AR AR A TR M F R 0 BTAAF C 2 decidable
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HW#9 Problem 4

(Problem 4.16; 10 points) Let PALpra = {(M) | M is a DFA that accepts some
palindrome}. Show that PALpga is decidable. (Hint: Theorems about CFLs are helpful
here.)
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HW#9 Problem 4

Suppose TM R decides Eqp, and P is a PDA which L(P) = {w|w
is a palindrome}.
We can construct a decider D that decides PAL 4,

D = “Oninput (M), M is a DFA

1. Construct a PDA P’ which L(P") = L(P) N L(M) (the
intersection of a regular language and a context-free language is
context-free).

2. Convert P’ into an equivalent CFG G.

3. Run R on (G).

4. If R accepts, reject; otherwise, accept.”

Since R is a decider and D runs in finite steps, PAL 4 is
decidable.
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HW+#9 Problem 5

(Problem 4.31; 20 points) Let INFINITEppa = {(M) | M is a PDA and L(M) is infinite}.
Show that INFINITEpp, is decidable.
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HW#9 Problem 5

F5€ PDA P&ty & 25 H £ % 18

# pumping lemma Ti4eid © 2% CFL RAEF$ s REH
pumping length p YAt > 3T vk &R BT S48 CFL A
i Ly — § A —EREA7 p §2 2p M8 F $:

2R p < |s| < 2p MAA T
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HW#9 Problem 5

Y = "On input (M) where M is a PDA:
1. Convert M to a CFG G and compute G ’ s pumping length p.

2. Construct a regular expression F that contains all strings of length
p or more.

3. Construct a CFG H such that L(H) = L(G) N L(E)
4. Test L(H) = (), using the Eq e decider R.
5. If R accepts, reject; if R rejects, accepts.”

Homework 8 - 10 Theory of Computing 2024 44 /64



HW#9 Problem 6

(Exercise 5.1; 10 points) Show that FQcpc is undecidable.

o =3 = E DAl
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HW#9 Problem 6

The idea is to reduce ALLq g to EQopq-

Assume that a TM R decides EQcpq.

Construct a CFG G’ which L(G") = ¥*.

We could then construct a decider S for ALL ¢ as follows:

S = “Oninput (G), G is a CFG:

1. Run TM R on input (G, G").
2. If R rejects, reject; if R accepts, accepts. ”

But we've known that ALL, ¢ is undecidable, so EQqpq is
undecidable.
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HW#9 Problem 7

(Exercise 5.4; 20 points) If A is reducible to B and B is a regular language, does that
imply that A is a regular language? Why or why not?
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HW#9 Problem 7

FIR R A A A—% % regular language

B3 A & context-free language, #/E#) CFG 5 G,

B 5% regular language, B = {1},

#4%—18 computable function f 4 we A < f(w) € B,
& My, decides Acpg,

f = “On input w:

1. Run M, ___ oninput (G,w)
2. If My accepts, output 1; otherwise, output 0"
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HW+#10 Problem 1

(Problem 5.9; 10 points) Let AMBIGcrg = {(G) | G is an ambiguous CFG}. Show that
AMBIGcrg is undecidable. (Hint: use a reduction from PCP. Given an instance

p={[e] [e] [}

of PCP, construct a CFG G with the rules:

S —- T|B
T — tiTay |- |tTak|tiar |- | tkak
B — bBay|---|bgBag | bay |- | brag,
where ay, . .., aj are new terminal symbols. Prove that this reduction works.)
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HW#10 Problem 1

Assume that a TM D 4,57 decides AM BIG ¢, We can
construct a decider D that decides PC'P as follows: D = "On input
(P), where R = {}: 1. Construct a CFG G with the rules:
S—T|B
T —t,Tay | ...|thkTay | tiaq | ... | tpay
B — blBal | | kaak. | blal | | bkak
2. Run D51 on input (G).

3. If D 4B1c accepts, accept; otherwise, reject.”

But we've known that PCP is undecidable, so AMBIG g is
undecidable.
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HW#10 Problem 2

(Problem 5.14(b); 20 points) Define a two-headed finite automaton (2DFA) to be a de-
terministic finite automaton that has two read-only, bidirectional heads that start at the
left-hand end of the input tape and can be independently controlled to move in either
direction. The tape of a 2DFA is finite and is just large enough to contain the input plus
two additional blank tape cells, one on the left-end and one on the right-hand end, that
serve as delimiters. A 2DFA accepts its input by entering a special accept state. For
example, a 2DFA can recognize the language {a"b"c" | n > 0}.

Let Eoppa = {(M) | M is a 2DFA and L(M) = 0}. Show that Esppa is undecidable.
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HW#10 Problem 2

We can reduce E.,, to Eypp, .

The idea is to construct a 2DFA that recognizes the accept
computational history ¢, #co# ... #c,, of a T™M M.

To do so, the 2DFA checks if ¢; consists ¢,,,, and a symbol in %,
and then checks if ¢, consists g,..,; and symbols in X.

For middle transitions, let one head on ¢; and the other on ¢, ; and
check each states and symbols.
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HW#10 Problem 2

Assume that a T™M D,,,, decides F, .., we can construct a decider
D that decides E,, as follows:

D = "On input (M), where M is a T™:
1. Construct a 2DFA N from M as described in previous slide.
2. Run D, ., on input (N).

3. If Dy, accepts, accept; otherwise, reject.”

But we've known that £, is undecidable, so E, ., is undecidable.
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HW+#10 Problem 3

(Problem 5.18 adapted; 20 points) Please discuss briefly the applicability of Rice’s theorem
to proving the undecidability of each of the following languages.

(a) REGULARtM = {(M) | M is a TM and L(M) is regular}.
(b) Epga = {{M) | M is an LBA where L(M) = 0}.
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HW#10 Problem 3

To show if Rice's theorem is applicable, check two things:
(1) The property is of a language recognized by a TM.
(2) The property is non-trivial.

The property is non-trivial if there exists a TM satifies it and one
does not.

(a) Applicable. M is a TM and "L(M) is regular "is a non-trivial
property of a language.

(b) Not applicable. M is not a TM
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HW+#10 Problem 4

(Problem 5.22; 20 points) Let X = {(M,w) | M is a single-tape TM that never modifies
the portion of the tape that contains the input w}. Is X decidable? Prove your answer.
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HW#10 Problem 4
We can try to reduce A,,, to X.

Assume that a TM Dy decides X, we can construct a decider D that
decides A, as follows:

D = "On input (M, w), where M is a T™M and w is a string:
1. Construct M’ = "On input u:
1. Move to the right of v and put $.
2. Copy w after $.
3. Simulate M on the portion of w.
4. If M accepts and u is not empty, modify any character of u
and accept; otherwise, reject.”
2. Run D on input (M’ u) for any non-empty string w.
3. If Dy accepts, reject; otherwise, accepts.”

But we've known that A, is undecidable, so X is undecidable.
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HW+#10 Problem 5

(Problem 5.29; 10 points) A useless state in a Turing machine is one that is never entered
on any input string. Consider the problem of determining whether a Turing machine has
any useless states. Formulate this problem as a language and show that it is undecidable.
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HW#10 Problem 5

USELESSyy; = {(M,q) | qis a useless state in TM M}.

Suppose that USELES Sy, is decidable and that TM R decides it.
For any Turing machine M with accept state q,cccpt: Qaccept 1S
useless if and only if L(M) = 0.

Since Epyy = {(M) | M isa TM and L(M) = 0}

We can use R to check if q,...,: is a useless state to decide Er,.
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HW#10 Problem 5

S = "On input (M), where M is a TM:

L. Run TM R on input (M, @yecepr), Where g, is the accept
state of M.

2. If R accepts, accept. If R rejects, reject.”

But we've known that E,;, is undecidable, so the problem of
determining whether a TM has any useless states is undecidable.
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HW#10 Problem 6

(10 points) Let ALLppa = {(A) | A is a DFA and L(A) = *}. Prove that ALLpra € P.

. 2 ; . o>
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HW#10 Problem 6

We can construct a deterministic decider D that decides ALL
polynomial time as follows:

DFA n

D = "On input (A), where A is a DFA with n states:
(O(1)) 1. Mark the initial state of A.
(O(n?)) 2. Mark the states of A that can be arrived from
any marked states until no state can be marked.
(O(n)) 3. If there is any non-accepting state marked, reject;
otherwise, accepts.”

The decider D will decide ALL,,, in (O(n?)), so ALL,,, € P.
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HW#10 Problem 7

(10 points) Two graphs G and H are said to be isomorphic if the nodes of G may be re-
named so that it becomes identical to H. Let ISO = {(G, H) | G and H are isomorphic}.
Prove that ISO € NP, using the definition NP = |J, NTIME(n*).
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HW#10 Problem 7

We can construct an nondeterministic polynomial time decider N
decides 150 as follows:

N = "On input (G, H) where G(V,E) and H(V',E’) are
undirected graphs:

L If |V # |V or |[E| # |E’|, reject.

2. Nondeterministically select a permutation 7 of m elements.

3. For all {(z,y)|z,y € V}, check whether "(z,y) € E iff
(m(x),m(y)) € E'" is satisfied . If all agree, accepts. If any differ,
reject.

Stage 2 can be implemented in polynomial time nondeterministically.

(arbitrary pop a node = from V' and repeat until V' is empty)
Stages 1 and 3 takes polynomial time. Hence ISO € NP.
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