
Homework 8 - 10

Homework 8 - 10 Theory of Computing 2024 1 / 64

Menu

1 HW#8
1
2
3
4
5
6

2 HW#9
1
2
3
4
5
6
7

3 HW#10
1
2
3
4
5
6
7

Homework 8 - 10 Theory of Computing 2024 2 / 64

HW#8 Problem 1

Homework 8 - 10 Theory of Computing 2024 3 / 64

HW#8 Problem 1

The Turing machine tm for the problem is a 7-tuple
(𝑄, Σ, Γ, 𝛿, 𝑞𝑠, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡), where

𝑄 is the set of states,
Σ = {0, 1},
Γ = {0, 1, ̇0, ̇1, #, ␣},
𝑞𝑠 is the start state,
𝑞𝑎𝑐𝑐𝑒𝑝𝑡 is the accept state, and
𝑞𝑟𝑒𝑗𝑒𝑐𝑡 is the reject state.

Homework 8 - 10 Theory of Computing 2024 4 / 64

HW#8 Problem 1

𝑞𝑠start 𝑞0 𝑞1 𝑞2 𝑞3

𝑞4

𝑞5

𝑞6𝑞7𝑞𝑎𝑐𝑐𝑒𝑝𝑡

0 → ̇0, 𝑅
1 → ̇1, 𝑅

␣ → #

0, 1 → 𝑅

0, 1 → 𝑅

␣ → 𝐿 0 → ␣, 𝑅

1 → ␣, 𝑅

␣ → 0, 𝐿

␣ → 1, 𝐿

̇0 → 0, 𝑅
̇1 → 1, 𝑅

0, 1, ␣ → 𝐿

0 → ̇0, 𝑅
1 → ̇1, 𝑅

␣ → #

0, 1 → 𝑅 ␣ → 𝐿

Homework 8 - 10 Theory of Computing 2024 5 / 64

HW#8 Problem 2

Homework 8 - 10 Theory of Computing 2024 6 / 64

HW#8 Problem 2

Since 𝑥0 is a root of the polynomial,
𝑐1𝑥𝑛

0 + 𝑐2𝑥𝑛−1
0 + ... + 𝑐𝑛𝑥0 + 𝑐𝑛+1 = 0

By triangle inequality,
|𝑐1𝑥𝑛

0 + 𝑐2𝑥𝑛−1
0 + ... + 𝑐𝑛𝑥0 + 𝑐𝑛+1| = 0 ≤

|𝑐1𝑥𝑛
0 | + |𝑐2𝑥𝑛−1

0 | + ... + |𝑐𝑛𝑥0| + |𝑐𝑛+1|

Case 1 |𝑥0| < 1:
Since (𝑛 + 1)𝑐𝑚𝑎𝑥

|𝑐1| ≥ 1, |𝑥0| < (𝑛 + 1)𝑐𝑚𝑎𝑥
|𝑐1|

Homework 8 - 10 Theory of Computing 2024 7 / 64

HW#8 Problem 2

Case 2 |𝑥0| ≥ 1:
We can get the upper bound of each term by 𝑐𝑚𝑎𝑥:
|𝑐1𝑥𝑛

0 | + |𝑐2𝑥𝑛−1
0 | + ... + |𝑐𝑛𝑥0| + |𝑐𝑛+1| ≤ 𝑛 ⋅ 𝑐𝑚𝑎𝑥|𝑥𝑛−1

0 | + 𝑐𝑚𝑎𝑥
Divide |𝑐1| on both sides:
|𝑥𝑛

0 | + |𝑐2
𝑐1

||𝑥𝑛−1
0 | + ... + |𝑐𝑛

𝑐1
||𝑥0| + |𝑐𝑛+1

𝑐1
| ≤ (𝑛 + 1) ⋅ 𝑐𝑚𝑎𝑥

|𝑐1| |𝑥𝑛−1
0 |

Since |𝑐2
𝑐1

||𝑥𝑛−1
0 | + ... + |𝑐𝑛

𝑐1
||𝑥0| + |𝑐𝑛+1

𝑐1
| are all positive,

|𝑥𝑛
0 | ≤ (𝑛 + 1) ⋅ 𝑐𝑚𝑎𝑥

|𝑐1| |𝑥𝑛−1
0 |

|𝑥0| ≤ (𝑛 + 1)𝑐𝑚𝑎𝑥
|𝑐1|

Homework 8 - 10 Theory of Computing 2024 8 / 64

HW#8 Problem 3

Homework 8 - 10 Theory of Computing 2024 9 / 64

HW#8 Problem 3

Homework 8 - 10 Theory of Computing 2024 10 / 64

HW#8 Problem 3

Homework 8 - 10 Theory of Computing 2024 11 / 64

HW#8 Problem 3

Homework 8 - 10 Theory of Computing 2024 12 / 64

HW#8 Problem 3

Homework 8 - 10 Theory of Computing 2024 13 / 64

HW#8 Problem 3

Homework 8 - 10 Theory of Computing 2024 14 / 64

HW#8 Problem 3

Homework 8 - 10 Theory of Computing 2024 15 / 64

HW#8 Problem 3

Homework 8 - 10 Theory of Computing 2024 16 / 64

HW#8 Problem 3

Homework 8 - 10 Theory of Computing 2024 17 / 64

HW#8 Problem 3

Homework 8 - 10 Theory of Computing 2024 18 / 64

HW#8 Problem 3

Homework 8 - 10 Theory of Computing 2024 19 / 64

HW#8 Problem 3

Homework 8 - 10 Theory of Computing 2024 20 / 64

HW#8 Problem 4

Homework 8 - 10 Theory of Computing 2024 21 / 64

HW#8 Problem 4

Let 𝐴 be an infinite Turing-recognizable language, then there exists
an enumerator 𝐸 that enumerates all strings in 𝐴.
We can construct an enumerator 𝐸′ that prints a subset of 𝐴 in
lexicographic order:

1. Simulate 𝐸, when 𝐸 prints its first string 𝑤1, print 𝑤1 and let
𝑤𝑟 = 𝑤1.
2. Continue simulating 𝐸.
3. When 𝐸 is ready to print a new string 𝑤, check if 𝑤 is longer than
𝑤𝑟 (this ensures 𝑤 occurs after 𝑤𝑟 in standard order(order by
length)). If so, then print 𝑤 and let 𝑤𝑟 = 𝑤, otherwise do not print
𝑤.
4. Go to 2.

Homework 8 - 10 Theory of Computing 2024 22 / 64

HW#8 Problem 4

The language of 𝐸′ is infinite since 𝐴 is infinite, there exist strings in
𝐴 longer than the current 𝑤𝑟 , which means 𝐸 will eventually print
one of these and so will 𝐸′.
The language of 𝐸′ language is decidable since it prints strings in
standard order.
Thus, the language of 𝐸′ is an infinite decidable subset of 𝐴.

Homework 8 - 10 Theory of Computing 2024 23 / 64

HW#8 Problem 5

Homework 8 - 10 Theory of Computing 2024 24 / 64

HW#8 Problem 5

Use the property: 𝐴 ⊆ 𝐵 ⇔ 𝐴 ∩ 𝐵 = ∅.
Let tm 𝑅 decides 𝐸cfg, we can construct a decider 𝐷 as follows:

𝐷 = ”On input ⟨𝑀, 𝑁⟩, where 𝑀 is a pda and 𝑁 is a dfa:
1. Construct the complement 𝑁 of 𝑁 .
2. Construct a pda 𝑃 that recognizes the intersection of 𝑀 and 𝑁
(the intersection of a context-free language and a regular language is
context free).
3. Let 𝐺𝑃 be the context-free grammar that recognized by 𝑃 , run 𝑅
on input ⟨𝐺𝑃 ⟩.
4. If 𝑅 accepts, 𝑎𝑐𝑐𝑒𝑝𝑡; otherwise, 𝑟𝑒𝑗𝑒𝑐𝑡.”

Homework 8 - 10 Theory of Computing 2024 25 / 64

HW#8 Problem 6

Homework 8 - 10 Theory of Computing 2024 26 / 64

HW#8 Problem 6

We can construct a decider 𝐷 as follows:

𝐷 = ”On input ⟨𝐺⟩, where 𝐺 is a cfg:
1. Convert 𝐺 to an equivalent grammar in Chomsky normal form 𝐺′.
2. If (𝑆0 → 𝜖) ∈ 𝐺′, 𝑎𝑐𝑐𝑒𝑝𝑡 (in Chomsky normal form, only 𝑆0 can
generate 𝜖); otherwise, 𝑟𝑒𝑗𝑒𝑐𝑡.”

Homework 8 - 10 Theory of Computing 2024 27 / 64

HW#8 Problem 6

Reduction method:

Let tm 𝑆 decides 𝐴cfg, we can construct a decider 𝐷 as follows:

𝐷 = ”On input ⟨𝐺⟩, where 𝐺 is a cfg:
1. Run 𝑆 on input ⟨𝐺, 𝜖⟩.
2. If 𝑆 accepts, 𝑎𝑐𝑐𝑒𝑝𝑡; otherwise, 𝑟𝑒𝑗𝑒𝑐𝑡.”

Homework 8 - 10 Theory of Computing 2024 28 / 64

HW#9 Problem 1

Homework 8 - 10 Theory of Computing 2024 29 / 64

HW#9 Problem 1

Suppose 𝐵 is countable, we can draw a table of 𝑛 ∈ 𝑁 and
𝑓(𝑛) ∈ 𝐵.
For 𝑛 ∈ 𝑁 , 𝑓(𝑛) = 𝑏𝑛1𝑏𝑛2𝑏𝑛3...

𝑛 𝑓(𝑛)
1 110...
2 001...
3 100...
⋮ ⋮

Homework 8 - 10 Theory of Computing 2024 30 / 64

HW#9 Problem 1

Then define a infinite sequence 𝑐 = 𝑐1𝑐2𝑐3... ∈ 𝐵, where 𝑐𝑖 = 1 − 𝑏𝑖𝑖.
Since 𝑐 differs from the 𝑖-th sequence in the 𝑖-th bit, 𝑐 doesn’t equal
to any 𝑓(𝑛), contradiction!
Therefore, 𝐵 is uncountable.

Homework 8 - 10 Theory of Computing 2024 31 / 64

HW#9 Problem 2

Homework 8 - 10 Theory of Computing 2024 32 / 64

HW#9 Problem 2

A 是 Turing-recognizable language，包含了某些 Deciders
說明必然存在一個 decidable language D，它不能被 A 裡頭的任何
Decider 給 decide

Homework 8 - 10 Theory of Computing 2024 33 / 64

HW#9 Problem 2

使用對角論證法：

題目提示告訴我們，既然 A 是 Turing-recognizable，就表示有一個
Enumerator E 可以生成 A
將 E 生成的第 i 個 TM 標記為 𝑀𝑖
而因為 Σ∗ 是可數集，存在一種排序法使對於任一個字串 𝑠 ∈ Σ∗ 而
言，都能標記它出現的順序
於是可以做出一張表

Homework 8 - 10 Theory of Computing 2024 34 / 64

HW#9 Problem 2
𝑠1 𝑠2 ... 𝑠𝑖 ...

𝑀1 accept accept ... reject ...
𝑀2 accept reject ... accept ...

⋮
𝑀𝑖 reject accept ... reject ...
⋮

依照這張表，建構一個 TM 𝑀𝐷
𝑀𝐷 = “On input 𝑠:
1. 計算出 𝑠 在 Σ∗ 當中的順位 𝑖
2. 將 𝑠 丟入 𝑀𝑖 當中計算
3. If 𝑀𝑖 accepts, reject; otherwise, accept.”
這樣就能建構出一台與 A 當中的任何圖靈機都不一樣的機器
而且 𝑀𝑖 本身是 Decider，這台機器一定會停機，所以 𝑀𝐷 是
Decider，並且 𝑀𝐷 在 input 𝑠𝑖 下會得到和 𝑀𝑖 不同的結果
因此存在 decidable language 𝐷 不能被 𝐴 中的任何 decider 所 decide

Homework 8 - 10 Theory of Computing 2024 35 / 64

HW#9 Problem 2

這題能告訴我們什麼
一個存著「所有」Deciders 的語言
𝐷𝐴𝐿𝐿 = {⟨𝐷⟩ | D decides a language over Σ∗} 不可能是
Turing-recognizable

Homework 8 - 10 Theory of Computing 2024 36 / 64

HW#9 Problem 3

Homework 8 - 10 Theory of Computing 2024 37 / 64

HW#9 Problem 3

存在一個 decider，可以判斷 CFG 𝐺 是否會生成某個字串 𝑦 使得 𝑥 是
它的子字串
那麼就是要把 𝐿(𝐺) 與 Σ∗𝑥Σ∗ 這兩個 language 取交集
一個 CFL 與 RL 的交集也是 CFL (將 PDA 與 DFA 的狀態合在一起
做成新的 PDA)
再把交集出來的語言丟到 𝐸𝐶𝐹𝐺 的 Decider 裡頭即可

Homework 8 - 10 Theory of Computing 2024 38 / 64

HW#9 Problem 3

M = ”On input ⟨𝐺, 𝑥⟩ where 𝐺 is a CFG:
1. Construct a CFG G’s.t. 𝐿(𝐺′) = 𝐿(𝐺) ∩ Σ∗𝑥Σ∗

2. Run 𝑀𝐸𝐶𝐹𝐺
on input ⟨𝐺′⟩

3. If 𝑀𝐸𝐶𝐹𝐺
accept, reject; otherwise, accept.”

上面每個步驟都能在有限時間完成，所以得 C 是 decidable

Homework 8 - 10 Theory of Computing 2024 39 / 64

HW#9 Problem 4

Homework 8 - 10 Theory of Computing 2024 40 / 64

HW#9 Problem 4

Suppose TM 𝑅 decides 𝐸𝐶𝐹𝐺, and 𝑃 is a PDA which 𝐿(𝑃) = {𝑤|𝑤
is a palindrome}.
We can construct a decider 𝐷 that decides 𝑃𝐴𝐿𝐷𝐹𝐴,

D = “On input ⟨𝑀⟩, 𝑀 is a DFA
1. Construct a PDA 𝑃 ′ which 𝐿(𝑃 ′) = 𝐿(𝑃) ∩ 𝐿(𝑀) (the
intersection of a regular language and a context-free language is
context-free).
2. Convert 𝑃 ′ into an equivalent CFG 𝐺.
3. Run 𝑅 on ⟨𝐺⟩.
4. If 𝑅 accepts, reject; otherwise, accept.”

Since 𝑅 is a decider and 𝐷 runs in finite steps, 𝑃𝐴𝐿𝐷𝐹𝐴 is
decidable.

Homework 8 - 10 Theory of Computing 2024 41 / 64

HW#9 Problem 5

Homework 8 - 10 Theory of Computing 2024 42 / 64

HW#9 Problem 5

判定 PDA 辨識的字串是否有無限多個
由 pumping lemma 可以知道，只要 CFL 內有個字串 𝑠 長度有
pumping length p 以上，就可以生成無限多個字串也在 CFL 內
而且此時一定會有一個長度介於 p 與 2p 之間的字串:
如果 𝑝 ≤ |𝑠| ≤ 2𝑝 那就有了

Homework 8 - 10 Theory of Computing 2024 43 / 64

HW#9 Problem 5

Y = ”On input ⟨𝑀⟩ where M is a PDA:
1. Convert 𝑀 to a CFG 𝐺 and compute 𝐺’s pumping length 𝑝.
2. Construct a regular expression 𝐸 that contains all strings of length
𝑝 or more.
3. Construct a CFG 𝐻 such that 𝐿(𝐻) = 𝐿(𝐺) ∩ 𝐿(𝐸)
4. Test 𝐿(𝐻) = ∅, using the 𝐸𝐶𝐹𝐺 decider 𝑅.
5. If 𝑅 accepts, reject; if 𝑅 rejects, accepts.”

Homework 8 - 10 Theory of Computing 2024 44 / 64

HW#9 Problem 6

Homework 8 - 10 Theory of Computing 2024 45 / 64

HW#9 Problem 6

The idea is to reduce 𝐴𝐿𝐿𝐶𝐹𝐺 to 𝐸𝑄𝐶𝐹𝐺.
Assume that a TM 𝑅 decides 𝐸𝑄𝐶𝐹𝐺.
Construct a CFG 𝐺′ which 𝐿(𝐺′) = Σ∗.
We could then construct a decider 𝑆 for 𝐴𝐿𝐿𝐶𝐹𝐺 as follows:

𝑆 = “On input ⟨𝐺⟩, 𝐺 is a CFG:
1. Run TM 𝑅 on input ⟨𝐺, 𝐺′⟩.
2. If 𝑅 rejects, reject; if 𝑅 accepts, accepts.”

But we’ve known that 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable, so 𝐸𝑄𝐶𝐹𝐺 is
undecidable.

Homework 8 - 10 Theory of Computing 2024 46 / 64

HW#9 Problem 7

Homework 8 - 10 Theory of Computing 2024 47 / 64

HW#9 Problem 7

利用反例說明 𝐴 不一定是 regular language

假設 𝐴 是 context-free language, 對應的 CFG 為 𝐺,
𝐵 是 regular language, 𝐵 = {1},
建構一個 computable function 𝑓 使得 𝑤 ∈ 𝐴 ⟺ 𝑓(𝑤) ∈ 𝐵,
令 𝑀𝐴𝐶𝐹𝐺

decides 𝐴𝐶𝐹𝐺,

f = “On input 𝑤:
1. Run 𝑀𝐴𝐶𝐹𝐺

on input ⟨𝐺, 𝑤⟩
2. If 𝑀𝐴𝐶𝐹𝐺

accepts, output 1; otherwise, output 0”

Homework 8 - 10 Theory of Computing 2024 48 / 64

HW#10 Problem 1

Homework 8 - 10 Theory of Computing 2024 49 / 64

HW#10 Problem 1

Assume that a TM 𝐷𝐴𝑀𝐵𝐼𝐺 decides 𝐴𝑀𝐵𝐼𝐺𝐶𝐹𝐺, we can
construct a decider 𝐷 that decides 𝑃 𝐶𝑃 as follows: 𝐷 = ”On input
⟨𝑃 ⟩, where 𝑅 = {}: 1. Construct a CFG 𝐺 with the rules:

𝑆 → 𝑇 ∣ 𝐵
𝑇 → 𝑡1𝑇 𝑎1 ∣ ... ∣ 𝑡𝑘𝑇 𝑎𝑘 ∣ 𝑡1𝑎1 ∣ ... ∣ 𝑡𝑘𝑎𝑘

𝐵 → 𝑏1𝐵𝑎1 ∣ ... ∣ 𝑏𝑘𝐵𝑎𝑘 ∣ 𝑏1𝑎1 ∣ ... ∣ 𝑏𝑘𝑎𝑘

2. Run 𝐷𝐴𝑀𝐵𝐼𝐺 on input ⟨𝐺⟩.
3. If 𝐷𝐴𝑀𝐵𝐼𝐺 accepts, accept; otherwise, reject.”

But we’ve known that PCP is undecidable, so 𝐴𝑀𝐵𝐼𝐺𝐶𝐹𝐺 is
undecidable.

Homework 8 - 10 Theory of Computing 2024 50 / 64

HW#10 Problem 2

Homework 8 - 10 Theory of Computing 2024 51 / 64

HW#10 Problem 2

We can reduce 𝐸tm to 𝐸2dfa.

The idea is to construct a 2dfa that recognizes the accept
computational history 𝑐1#𝑐2# … #𝑐𝑛 of a tm 𝑀 .

To do so, the 2dfa checks if 𝑐1 consists 𝑞𝑠𝑡𝑎𝑟𝑡 and a symbol in Σ,
and then checks if 𝑐𝑛 consists 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 and symbols in Σ.

For middle transitions, let one head on 𝑐𝑖 and the other on 𝑐𝑖+1 and
check each states and symbols.

Homework 8 - 10 Theory of Computing 2024 52 / 64

HW#10 Problem 2

Assume that a tm 𝐷2dfa decides 𝐸2dfa, we can construct a decider
𝐷 that decides 𝐸tm as follows:

𝐷 = ”On input ⟨𝑀⟩, where 𝑀 is a tm:
1. Construct a 2dfa 𝑁 from 𝑀 as described in previous slide.
2. Run 𝐷2dfa on input ⟨𝑁⟩.
3. If 𝐷2dfa accepts, 𝑎𝑐𝑐𝑒𝑝𝑡; otherwise, 𝑟𝑒𝑗𝑒𝑐𝑡.”

But we’ve known that 𝐸tm is undecidable, so 𝐸2dfa is undecidable.

Homework 8 - 10 Theory of Computing 2024 53 / 64

HW#10 Problem 3

Homework 8 - 10 Theory of Computing 2024 54 / 64

HW#10 Problem 3

To show if Rice’s theorem is applicable, check two things:
(1) The property is of a language recognized by a TM.
(2) The property is non-trivial.

The property is non-trivial if there exists a TM satifies it and one
does not.
(a) Applicable. 𝑀 is a TM and ”𝐿(𝑀) is regular ”is a non-trivial
property of a language.
(b) Not applicable. 𝑀 is not a TM

Homework 8 - 10 Theory of Computing 2024 55 / 64

HW#10 Problem 4

Homework 8 - 10 Theory of Computing 2024 56 / 64

HW#10 Problem 4
We can try to reduce 𝐴tm to 𝑋.

Assume that a tm 𝐷𝑋 decides 𝑋, we can construct a decider 𝐷 that
decides 𝐴tm as follows:

𝐷 = ”On input ⟨𝑀, 𝑤⟩, where 𝑀 is a tm and 𝑤 is a string:
1. Construct 𝑀 ′ = ”On input 𝑢:

1. Move to the right of 𝑢 and put $.
2. Copy 𝑤 after $.
3. Simulate 𝑀 on the portion of 𝑤.
4. If 𝑀 accepts and 𝑢 is not empty, modify any character of 𝑢

and 𝑎𝑐𝑐𝑒𝑝𝑡; otherwise, 𝑟𝑒𝑗𝑒𝑐𝑡.”
2. Run 𝐷𝑋 on input ⟨𝑀 ′, 𝑢⟩ for any non-empty string 𝑢.
3. If 𝐷𝑋 accepts, 𝑟𝑒𝑗𝑒𝑐𝑡; otherwise, 𝑎𝑐𝑐𝑒𝑝𝑡𝑠.”

But we’ve known that 𝐴tm is undecidable, so 𝑋 is undecidable.
Homework 8 - 10 Theory of Computing 2024 57 / 64

HW#10 Problem 5

Homework 8 - 10 Theory of Computing 2024 58 / 64

HW#10 Problem 5

𝑈𝑆𝐸𝐿𝐸𝑆𝑆𝑇 𝑀 = {⟨𝑀, 𝑞⟩ ∣ 𝑞 is a useless state in TM 𝑀}.
Suppose that 𝑈𝑆𝐸𝐿𝐸𝑆𝑆𝑇 𝑀 is decidable and that TM 𝑅 decides it.
For any Turing machine 𝑀 with accept state 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 is
useless if and only if 𝐿(𝑀) = ∅.
Since 𝐸𝑇 𝑀 = {⟨𝑀⟩ ∣ 𝑀 is a TM and 𝐿(𝑀) = ∅}
We can use R to check if 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 is a useless state to decide 𝐸𝑇 𝑀 .

Homework 8 - 10 Theory of Computing 2024 59 / 64

HW#10 Problem 5

S = ”On input ⟨𝑀⟩, where M is a TM:
1. Run TM 𝑅 on input ⟨𝑀, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡⟩, where 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 is the accept
state of 𝑀 .
2. If 𝑅 accepts, accept. If 𝑅 rejects, reject.”

But we’ve known that 𝐸𝑇 𝑀 is undecidable, so the problem of
determining whether a TM has any useless states is undecidable.

Homework 8 - 10 Theory of Computing 2024 60 / 64

HW#10 Problem 6

Homework 8 - 10 Theory of Computing 2024 61 / 64

HW#10 Problem 6

We can construct a deterministic decider 𝐷 that decides 𝐴𝐿𝐿dfa in
polynomial time as follows:

𝐷 = ”On input ⟨𝐴⟩, where 𝐴 is a dfa with 𝑛 states:
(𝑂(1)) 1. Mark the initial state of 𝐴.
(𝑂(𝑛2)) 2. Mark the states of 𝐴 that can be arrived from

any marked states until no state can be marked.
(𝑂(𝑛)) 3. If there is any non-accepting state marked, 𝑟𝑒𝑗𝑒𝑐𝑡;

otherwise, 𝑎𝑐𝑐𝑒𝑝𝑡𝑠.”

The decider 𝐷 will decide 𝐴𝐿𝐿dfa in (𝑂(𝑛2)), so 𝐴𝐿𝐿dfa ∈ 𝑃 .

Homework 8 - 10 Theory of Computing 2024 62 / 64

HW#10 Problem 7

Homework 8 - 10 Theory of Computing 2024 63 / 64

HW#10 Problem 7

We can construct an nondeterministic polynomial time decider 𝑁
decides 𝐼𝑆𝑂 as follows:

𝑁 = ”On input ⟨𝐺, 𝐻⟩ where 𝐺(𝑉 , 𝐸) and 𝐻(𝑉 ′, 𝐸′) are
undirected graphs:
1. If |𝑉 | ≠ |𝑉 ′| or |𝐸| ≠ |𝐸′|, 𝑟𝑒𝑗𝑒𝑐𝑡.
2. Nondeterministically select a permutation 𝜋 of 𝑚 elements.
3. For all {(𝑥, 𝑦)|𝑥, 𝑦 ∈ 𝑉 }, check whether ”(𝑥, 𝑦) ∈ 𝐸 iff
(𝜋(𝑥), 𝜋(𝑦)) ∈ 𝐸′” is satisfied . If all agree, 𝑎𝑐𝑐𝑒𝑝𝑡𝑠. If any differ,
𝑟𝑒𝑗𝑒𝑐𝑡.

Stage 2 can be implemented in polynomial time nondeterministically.
(arbitrary pop a node 𝑥 from 𝑉 and repeat until 𝑉 is empty)
Stages 1 and 3 takes polynomial time. Hence ISO ∈ NP.

Homework 8 - 10 Theory of Computing 2024 64 / 64

	HW#8
	1
	2
	3
	4
	5
	6

	HW#9
	1
	2
	3
	4
	5
	6
	7

	HW#10
	1
	2
	3
	4
	5
	6
	7

