
Theory of Computing [Compiled on April 29, 2024] Spring 2024

Suggested Solutions to Midterm Problems

1. Let A = {w ∈ {0, 1}∗ | w contains 110 as a substring or ends with 1}.

(a) Draw the state diagram of a DFA, with as few states as possible, that recognizes
A. The fewer states your DFA has, the more points you will be credited for this
problem.

Solution.

First attempt:

qε q1 q11 q110

0

1

0

1

1

0

0, 1

The above is correct, but contains redundancy. Once two consecutive 1s are read
(reaching state q11), the input string is destined to be accepted no matter what the
remaining symbols are. So, we have the following smaller and optimal DFA for A.

qε q1 q11

0

1

0

1

0, 1

2

(b) Give a regular expression, as short as possible, that describes A. The shorter your
regular expression is, the more points you will be credited for this problem.

Solution. Let Σ = {0, 1}. Then, A is described by Σ∗(110Σ∗ ∪ 1) or Σ∗1(1Σ∗ ∪ ε). 2

2. Let B = {w ∈ 0∗1∗ | the number of 0s and that of 1s in w are either both even or
both odd}. (Note that, in every string of B, all the 1s should follow the 0s, if any.)

(a) Draw the state diagram of an NFA, with as few states as possible, that recognizes
B. The fewer states your NFA has, the more points you will be credited for this
problem.

Solution.

qε q0 qa q−1

0

1

0

1
1

1

1

2

(b) Convert the preceding NFA systematically into an equivalent DFA (using the proce-
dure discussed in class, in an incremental manner). Do not attempt to optimize the
number of states, though you may omit the unreachable states.

Solution.

{qε} {q0} {qa} {q−1}

∅

0

1

0

1

0

1

0

1

0, 1

2

3. If A is any language, let A 1
2
− be the set of all first halves of strings in A so that

A 1
2
− = {x | for some y, |x| = |y| and xy ∈ A}.

Show that if A is regular, then so is A 1
2
−.

Solution. Suppose M is a DFA that recognizes A. For a finite automaton to recognize
A 1

2
− (so as to prove A 1

2
− is regular), the automaton must be able to “foresee,” when some

input x is exhausted, whether there exists a string y of the same length as x such that xy
will drive M to an accept state; note that string y may be of arbitrary contents but must
have the same length as x does. To accomplish this task of “foreseeing” the existence of
an adequate y, we will rely on an “extended reverse” MR

E of M that is to be run side by
side with M . MR

E is obtained from M by reversing the direction of every transition of M
and swapping the start and the accept states, resulting in almost an NFA (with possibly
multiple start states). For the ease of exposition, we adopt in the following a variant of
NFA where there may be more than one start states but without any ε-transition.

To recognize A 1
2
−, we have an NFA simulate simultaneously M and MR

E . Note that M

and MR
E have the same set of states. If M and MR

E meet at the same state when some
input x is exhausted, it means that xxR, with xR playing the role of y, can drive M to
an accept state. Such an input should be accepted. To allow arbitrary contents (not just
xR) for string y, we further extend the symbol on every transition of MR

E to the whole
alphabet; i.e., whenever a transition exists from one state to another for some symbol, we
add a transition between the two states for every other symbol.

Formally, let the aformentionedM = (Q,Σ, δA, q0, F) andMR
E = (Q,Σ, δRE , F, {q0}), where

δRE(q, a) = {q′ | δA(q′, a) = q or δA(q
′, b) = q for some b}. Then, the NFA for A 1

2
− is

(Q×Q,Σ, δ, {q0} × F, {(q, q) | q ∈ Q}), where δ((qA, q
R
E), a) = {δA(qA, a)} × δRE(q

R
E , a). 2

2

4. Is the language {anb(n mod K) | n > 0}, where K is a positive integral constant, regular?
Please justify your answer.

Solution. Let us consider a more general language {ambn | m,n > 0 and m ≡ n mod K},
referred to as BK . With the only exception of K = 1, BK is regular for any given
positive integral constant K (i.e., when K ≥ 2). In particular, mapping symbols a and b
respectively to 0 and 1, B2 ∪ {ε} equals language B in Problem 2. The NFA for B may
be easily adapted and generalized to recognize BK for any K ≥ 2. Below is an NFA for
K = 3.

qε

qa

qaa qacc

q−2

q−1

a

b

a

b

a

b

b b

b

2

5. Let B be the collection of binary strings that contain at least one 1 in their second half,
i.e., B = {uv | u ∈ Σ∗, v ∈ Σ∗1Σ∗, and |u| ≥ |v|}, where Σ = {0, 1}. Give a CFG that
generates B.

Solution. The following CFG generates B.

S → AB
A → 0A | 1A | ε
B → 0B0 | 0B1 | 1B0 | 1B1 | C
C → 0D1 | 1D1
D → 0D0 | 0D1 | 1D0 | 1D1 | ε

Variable B generates binary strings of an even length, where the second half contains at
least one 1 (enforced by variable C), while variable A adds some 0 or 1, probably none,
to the front of B. 2

6. Consider the following context-free grammar:

S → aSaSb | aSbSa | bSaSa | SS | ε

Prove that every string over {a, b} with twice as many a’s as b’s (including the empty
string) can be generated from S. (Hint: by induction on the length of a string.)

3

Solution. The proof is by induction on the length |s| of a string s where the number of
a’s is twice the number of b’s. It is apparent that |s| equals 3n for some n ≥ 0.

Base case (|s| = 0 or |s| = 3): When |s| = 0, s is the empty string, which can be generated
by the rule S → ε. When |s| = 3, there are three possible strings that satisfy the condition,
namely aab, aba, and baa. All of them can be generated from S. For instance, aab can be
generated from S as follows: S ⇒ aSaSb ⇒ aaSb ⇒ aab.

Inductive step (|s| > 3): Symbols in the string s may be divided (not necessarily consecu-
tive in positions) into groups of two a’s and one b so that every symbol belongs to exactly
one group. If we scan s symbol by symbol from left to right and try to divide the symbols
into groups of two a’s and one b as soon as that becomes possible, either we will reach a
point before the end of s where all symbols so far have been successfully grouped or such
grouping is never completed until we reach the very last symbol of s.

Case 1: Scanning left to right, we reach a point before the end of s where all symbols
so far can be successfully grouped. Let s = xy such that scanning the last symbol of x
defines the point we have reached, i.e., x is the shortest prefix of s that has twice as many
a’s as b’s. Clearly, the suffix y must also have twice as many a’s as b’s. From the induction
hypothesis, both x and y can be generated from S. It follows that s can be generated
from S as follows: S ⇒ SS ⇒∗ xS ⇒∗ xy

Case 2: The grouping of two a’s and one b has never been completed until we reach the
very last symbol of s. To help the analysis, we define balance(x) for any string x over
{a, b} as follows:

balance(x) =


0 if x = ε
balance(y) + 1 if x = ya
balance(y)− 2 if x = yb

It is clear that balance(x) = 0 iff x has twice as many a’s as b’s. In the case under
consideration, while we scan s from left to right, we have never seen a non-empty proper
prefix x of s such that balance(x) is 0.

We claim that s cannot be of the form byb. First we observe that balance(b) = −2 and
balance(by) must be 2 (for balance(byb) to be 0). An occurrence of a helps increase the
value of balance by 1 as we scan the string from left to right. To climb up from −2 to
2, we must pass through 0. So, there would have to be a non-empty proper prefix x of
s = byb such that balance(x) = 0, which is a contradiction. Now, we are left with three
forms of s, namely aya, ayb, and bya, to consider. We tackle the case of ayb; others may
be treated in a similar way.

If s = ayb and no non-empty proper prefix x of s exists such that balance(x) is 0, we claim
that y must be of the form aw; otherwise, balance(ab) = −1 and the value of balance would
to pass through 0 at least once before reaching 2 at s = ay, a contradiction. Therefore, s
can be divided as aawb where balance(w) must be 0. From the induction hypothesis, w
can be generated from S. It follows that s = aawb can be generated from S as follows:
S ⇒ aSaSb ⇒ aaSb ⇒∗ aawb.

2

7. For any language A, let SUFFIX (A) = {v | uv ∈ A for some string u}. Show that the
class of context-free languages is closed under the SUFFIX operation.

Solution. We need to show that, for every context-free language A, SUFFIX (A) is context
free. Given a PDA MA recognizing A, the basic idea is to construct for SUFFIX (A) a

4

PDA that proceeds in two stages: in the first stage, it simulates an adapted copy of MA

and, in the second stage, an identical copy of MA. The adapted copy behaves like MA but
does not actually consume the input symbols (or, put in another way, it consumes some
“imaginery” symbols in front of the real input) and, at any state, it nondeterministically
makes an ε-transition to the corresponding state in the second copy. Given v as the input,
if uv ∈ A for some string u, then v will drive the constructed PDA to an accept state.

Formally, let MA = (QA,Σ,Γ, δA, q0, F) be the PDA that recognizes A. Let Q′
A denote

the “primed” version of QA, where every state q′ ∈ Q′
A corresponds to a state q in QA,

i.e., Q′
A is a duplicate of QA but with the name q of each state changed to q′. The PDA

for SUFFIX (A) is MS = (Q′
A ∪QA,Σ,Γ, δS , q

′
0, F) with δS defined as follows.

(a) Simulation of the first adapted copy of MA. For q
′ ∈ Q′

A, a ∈ Σε, and c ∈ Γε,

δS(q
′, a, c) =


∅ if a ̸= ε
{(r′, d) | (r, d) ∈ δA(q, b, c) if a = ε and c ̸= ε
for some b ∈ Σε}

{(r′, d) | (r, d) ∈ δA(q, b, c) if a = ε and c = ε
for some b ∈ Σε} ∪ {(q, ε)}

(b) Simulation of the second copy of MA. For q ∈ QA, a ∈ Σε, and c ∈ Γε,

δS(q, a, c) = δA(q, a, c)

2

8. Let A/B = {w | wx ∈ A for some x ∈ B}. Show that, if A is context free and B is
regular, then A/B is context free.

Solution. Suppose MA is a PDA recognizing A and MB a DFA recognizing B. To show
that A/B is context free, we construct a PDA MA/B that recognizes A/B. MA/B proceeds
in two stages. In the first stage, MA/B simulates MA on the input w, and additionally
in each step nondeterministically guessing that the end of w has been reached, branches
to the second stage. When in the second stage, MA/B simulates both MA and MB on
an imaginary input x, which is “self-supplied”, rather than coming from the actual input.
MA/B is defined such that every possible x is attempted.

Let MA = (QA,Σ,ΓA, δA, q
0
A, FA) and MB = (QB,Σ, δB, q

0
B, FB). The PDA MA/B =

(QA/B,Σ,ΓA/B, δA/B, q
0
A/B, FA/B) is defined as follows:

• QA/B = QA ∪QA ×QB.

• ΓA/B = ΓA.

• δA/B is defined according to the two stages:

(a) Simulation of MA on actual input and nondeterministic branching to the second
stage. For qA ∈ QA, a ∈ Σε, and c ∈ Γε,

δA/B(qA, a, c) =

{
δA(qA, a, c) ∪ {((qA, q0B), c)} if a = ε
δA(qA, a, c) ∪ {((q′A, q0B), d) | (q′A, d) ∈ δA(qA, a, c)} if a ̸= ε

5

(b) Simulation of MA and MB on imaginary input. For (qA, qB) ∈ QA×QB, a ∈ Σε,
and c ∈ Γε,

δA/B((qA, qB), a, c) =


{((q′A, q′B), d) | (q′A, d) ∈ δA(qA, a

′, c) if a = ε
for some a′ ∈ Σ s.t. q′B = δB(qB, a

′)} ∪
{((q′A, q′B), d) | (q′A, d) ∈ δA(qA, ε, c)
and q′B = qB}

∅ if a ̸= ε

• q0A/B = q0A.

So, δA/B includes an ε-transition going from q0A/B to (q0A, q
0
B) with no update on the

stack.

• FA/B = {(qA, qB) | qA ∈ FA and qB ∈ FB}.

2

9. Let C = {wtwR | w, t ∈ {0, 1}∗ and |w| = |t|}, where wR is the reverse of w. Prove that
C is not context free.

Solution. We take s to be 1p0p(01)p0p1p, where p is the pumping length, and show that
s cannot be pumped. Note that s indeed is of the form wtwR with w = 1p0p, t = (01)p,
and |w| = 2p = |t|. Note also that the (2p + 1)-th symbol of s is a 0, while the last
(2p+1)-th symbol is a 1; similarly, the (2p+2)-th symbol is a 1, while the last (2p+2)-th
symbol is a 0. Each of the two pairs of symmetrical positions contain different symbols
and are sufficiently far apart, so if we pump up s in between the symmetrical positions
particularly, the resulting string becomes longer and will not be of the form wtwR with
|w| = |t|. There are basically five ways to divide s into uvxyz such that |vy| > 0 and
|vxy| ≤ p and we exam each of them below.

Case 1: vxy falls (entirely) within the substring 1p0p. If either v or y saddles on the
middle point and contains both 1 and 0, then when we pump down, the first p symbols
will contain some trailing 0s and cannot be the reverse of 1p at the end of the resulting
string (which is of length at least 3p). Otherwise, either v contains some 1s but no 0s or
both v and y contain only 0s. In the first case, when we pump up, the first 2p symbols will
have more 1s than 0s and hence cannot be the reverse of 0p1p at the end of the resulting
string (which is of length greater than 6p). In the second case, when we pump up, the
(2p+1)-th symbol will remain a 0 and the last (2p+1)-th symbol will also remain a 1 and
hence the resulting string (of length greater than 6p) cannot be of the form wtwR (with
w of length at least 2p+ 1).

Case 2: vxy falls within 0p(01)
p
2 . In this case, no matter what v and y contain, when we

pump up, the (2p + 1)-th symbol will remain a 0, while the last (2p + 1)-th symbol will
remain a 1, and hence the resulting string (of length greater than 6p) cannot be of the
form wtwR (with w of length at least 2p+ 1).

Case 3: vxy falls within (01)p. This is analogous to Case 2.

Case 4: vxy falls within (01)
p
2 0p. This case is a bit more subtle and is further divided into

five subcases:

(a) both v and y are within (01)
p
2 . When we pump up, the (2p + 1)-th symbol will

remain a 0 and the last (2p + 1)-th symbol will remain a 1 and hence the resulting
string (of length greater than 6p) cannot be of the form wtwR (with w of length at
least 2p+ 1).

6

(b) v is within (01)
p
2 and y saddles on the middle point. The same argument for Sub-

case (a) applies, when we pump up.

(c) v is within (01)
p
2 and y is within 0p. If y is nonempty, then when we pump up (i = 2),

the last (2p+2)-th symbol will become a 0, while the (2p+2)-th symbol will remain
a 1; otherwise (y is empty), when we pump up, the same argument for Subcase (a)
applies.

(d) v saddles on the middle point and y is within 0p. This is analogous to Subcase (c).

(e) both v and y are within 0p. This is also analogous to Subcase (c).

Case 5: vxy falls within 0p1p. This is analogous to Case 4(c).

2

10. Let D be the language of all binary strings that contain two 1s in their middle third, i.e.,
D = {xyz | x, z ∈ Σ∗ and y ∈ Σ∗1Σ∗1Σ∗, where |x| = |z| ≥ |y|}, where Σ = {0, 1}. Prove
that D is not context free.

Solution. We take s to be 0p10p−210p, where p is the pumping length, and show that s
cannot be pumped. Note that s contains exactly two 1s and indeed is of the form αβγ
with α = 0p ∈ Σ∗, γ = 0p ∈ Σ∗, β = 10p−21 ∈ Σ∗1Σ∗1Σ∗, and |α| = |β| ≥ |γ|. In dividing
s into uvxyz such that |vy| > 0, we note a clear restriction that neither v nor y may
contain a 1; otherwise, when we pump down, the resulting string is left with at most one
1 and hence cannot belong to D. With this restriction enforced, there are basically five
ways to divide s into uvxyz such that |vy| > 0 and |vxy| ≤ p and we exam each of them
below.

Case 1: vxy falls within the first third 0p. In this case, when we pump up, we force the
second 1 to move into the last third and the resulting string does not belong to D.

Case 2: vxy straddles on the two sides of the first 1 and falls within 0p−m−110m, for some
m, 1 ≤ m ≤ p − 2. With the stated restriction, both v and y are nonempty and contain
only 0s. When we pump up, we force the second 1 to move into the last third and the
resulting string does not belong to D.

Case 3: vxy falls within 0p−2. When we pump up, we force the second 1 to move into the
last third and the resulting string does not belong to D.

Case 4: vxy straddles on the two sides of the second 1 and falls within 0p−m−110m, for
some m, 1 ≤ m ≤ p − 2. Like in Case 2, both v and y are nonempty and contain only
0s. When we pump up, we force the first 1 to move into the first third and the resulting
string does not belong to D.

Case 5: vxy falls within the last third 0p. When we pump down, we force the second 1 to
move into the last third and the resulting string does not belong to D.

2

Appendix

• (Pumping Lemma for Context-Free Languages)

If A is a context-free language, then there is a number p such that, if s is a string in A
and |s| ≥ p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:

1. for each i ≥ 0, uvixyiz ∈ A,

7

2. |vy| > 0, and

3. |vxy| ≤ p.

8

